函数模型的应用教案 高三数学一轮复习_第1页
函数模型的应用教案 高三数学一轮复习_第2页
函数模型的应用教案 高三数学一轮复习_第3页
函数模型的应用教案 高三数学一轮复习_第4页
函数模型的应用教案 高三数学一轮复习_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数模型的应用【课标要求】了解指数函数、对数函数与一次函数增长速度的差异.理解“指数爆炸”“对数增长”“直线上升”等术语的含义.能选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用.教学目标:1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。教学重点:能选择合适的函数模型刻画现实问题的变化规律教学难点:能选择合适的函数模型刻画现实问题的变化规律教学过程:环节1:知识检测:1.有几个零点?2.(2023新课标1)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级,其中常数是听觉下限阈值,是实际声压.下表为不同声源的声压级:声源与声源的距离声压级燃油汽车10混合动力汽车10电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车处测得实际声压分别为,则().A.B.C.D.环节2:知识梳理1.三种函数模型的性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性是增加的是增加的是增加的增长速度越来越快越来越慢相对平稳图像的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同2.常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)反比例函数模型f(x)=eq\f(k,x)+b(k,b为常数且k≠0)指数函数模型f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=axα+b(a,b,α为常数,a≠0,α≠0)环节3:考点强化:考点一.用函数图象刻画变化过程例1.中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔1min测量一次茶水的温度,根据所得数据做出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=max+n(m>0,0<a<1)C.y=max+n(m>0,a>1)D.y=mlogax+n(m>0,a>0,a≠1)答案B解析由函数图像可知符合条件的只有指数函数模型,并且m>0,0<a<1.方法梳理:判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选择函数图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合函数图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.对点练习:(多选)血药浓度是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:根据图中提供的信息,下列关于成人服用该药物的说法中,正确的是()A.首次服用1单位该药物,约10分钟后药物发挥治疗作用B.每次服用1单位该药物,两次服药间隔小于2小时时,一定会产生药物中毒C.首次服用1单位该药物,约5.5小时后第二次服用1单位该药物,可使药物持续发挥治疗作用D.首次服用1单位该药物,3小时后再次服用1单位该药物,不会发生药物中毒答案ABC解析从图象中可以看出,首次服用1单位该药物,约10分钟后药物发挥治疗作用,A正确;根据图象可知,首次服用1单位该药物,约1小时后血药浓度达到最大值,由图象可知,当两次服药间隔小于2小时时,一定会产生药物中毒,B正确;服药5.5小时时,血药浓度等于最低有效浓度,此时再服药,血药浓度增加,可使药物持续发挥治疗作用,C正确;首次服用1单位该药物4小时后与再次服用1单位该药物1小时后,血药浓度之和大于最低中毒浓度,因此一定会发生药物中毒,D错误.考点二:已知函数模型的实际问题例2目前人类还无法准确预报地震,但科学家通过研究,发现地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.则里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.102倍C.103倍D.106倍答案C解析设里氏8.0级地震所释放出来的能量为E1,里氏6.0级地震所释放出来的能量为E2,则lgE1=4.8+1.5×8=16.8,E1=1016.8;lgE2=4.8+1.5×6=13.8,E2=1013.8,eq\f(E1,E2)=eq\f(1016.8,1013.8)=103.方法梳理:已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.对点练习:某化工企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M(单位:mg/L)与时间t(单位:h)之间的关系为M=M0e-kt(其中M0,k是正常数).已知经过1h,设备可以过滤掉20%的污染物,则过滤掉60%的污染物所需的时间约为(参考数据:lg2≈0.301)()A.3hB.4hC.5hD.6h答案B解析由题意可知(1-20%)M0=M0e-k,所以e-k=0.8,由(1-60%)M0=M0e-kt,得0.4=e-kt=(e-k)t=0.8t,所以t=log0.80.4=eq\f(lg0.4,lg0.8)=eq\f(lg\f(2,5),lg\f(4,5))=eq\f(lg2-lg5,2lg2-lg5)=eq\f(lg2-1-lg2,2lg2-1-lg2)=eq\f(2lg2-1,3lg2-1)≈eq\f(2×0.301-1,3×0.301-1)=eq\f(-0.398,-0.097)≈4.103,比较接近4.考点三构造函数模型的实际问题例3.某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.利用你选取的函数,求:①西红柿种植成本最低时的上市天数是______;②最低种植成本是________元/100kg.答案①120②80解析因为随着时间的增加,种植成本先减少后增加,而且当t=60和t=180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用二次函数Q=at2+bt+c,即Q=a(t-120)2+m描述,将表中数据代入可得eq\b\lc\{\rc\(\a\vs4\al\co1(a60-1202+m=116,,a100-1202+m=84,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=0.01,,m=80,))所以Q=0.01(t-120)2+80,故当上市天数为120时,种植成本取到最低值80元/100kg.方法梳理构建函数模型解决实际问题的步骤(1)建模:抽象出实际问题的数学模型.(2)推理、演算:对数学模型进行逻辑推理或数学运算,得到问题在数学意义上的解.(3)评价、解释:对求得的数学结果进行深入讨论,作出评价、解释,然后返回到原来的实际问题中去,得到实际问题的解.对点练习:国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?解设该旅行团的人数为x,飞机票的价格为y元.旅行社可获得的利润为w元.①当0≤x≤30时,y=900,②当30<x≤75时,y=900-10(x-30)=-10x+1200,综上有y=eq\b\lc\{\rc\(\a\vs4\al\co1(900,0≤x≤30,,-10x+1200,30<x≤75.))(2)当0≤x≤30时,w=900x-15000,当x=30时,wmax=900×30-15000=12000(元);当30<x≤75时,w=(-10x+1200)·x-15000=-10x2+1200x-15000=-10(x-60)2+21000,当x=60时,w最大为21000元,∴每团人数为60时,旅行社可获得最大利润.环节4课后巩固练习1.有几个零点?2.(2020·全国Ⅰ)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+bex D.y=a+blnx3.视力检测结果有两种记录方式,分别是小数记录与五分记录,其部分数据如下表:小数记录x0.10.120.15…11.21.52.0五分记录y4.04.14.2…55.15.25.3现有如下函数模型:①y=5+lgx,②y=5+eq\f(1,10)lg

eq\f(1,x),x表示小数记录数据,y表示五分记录数据,请选择最合适的模型解决如下问题:小明同学检测视力时,医生告诉他的视力为4.7,则小明同学的小数记录数据为(附100.3=2,5-0.22=0.7,10-0.1=0.8)()A.0.3B.0.5C.0.7D.0.84.某生物研究者于元旦在湖中放入一些凤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论