




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6讲解题技巧专题:平行四边形中线段和最值之将军饮马模型(2类热点题型讲练)目录TOC\o"1-3"\h\u【考点一两条线段和的最小值】 1【考点二多条线段和(周长)最小值】 10【考点一两条线段和的最小值】模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:【最值原理】两点之间线段最短。上图中A’是A关于直线m的对称点。例题:(2024·江苏南通·一模)如图,平行四边形中,分别是边上的动点,且,则的最小值为.【变式训练】1.(23-24八年级下·四川达州·期中)如图,是边长为6的等边三角形,点D在边上,且,线段在边上运动,,则的最小值为.2.(2024·陕西西安·二模)如图,在平面直角坐标系中,点,,,将线段沿x轴向右平移得到,连接,,则的最小值为.3.(23-24八年级下·陕西西安·阶段练习)如图,在四边形中,对角线于点O,若,,则的最小值为.
4.(22-23八年级下·贵州黔东南·期末)如图,平行四边形中,,E是边上一点,且是边上的一个动点,将线段绕点E逆时针旋转,得到,连接,则的最小值是.
5.(23-24八年级下·陕西西安·阶段练习)如图,在中,,,,D为边上一动点(不与点A重合),为等边三角形,过点D作的垂线,F为垂线上任意一点,连接,G为的中点,连接,则的最小值是.6.(22-23八年级下·四川成都·期中)在中,点为边上一点,将沿着翻折得到,点为中点,连接、,若,,,则的最小值为.
【考点二多条线段和(周长)最小值】模型2.求多条线段和(周长)最小值【模型解读】在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)台球两次碰壁模型1)已知点A、B位于直线m,n的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短.2)已知点A位于直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.【最值原理】两点之间线段最短。例题:(23-24八年级下·湖北武汉·阶段练习)如图,在平行四边形中,,.连接,且,平分交与于点.点在边上,,若线段(点P在点的左侧)在线段上运动,,连、,则的最小值为.【变式训练】1.(23-24九年级上·山东临沂·期末)已知如图,.为x轴上一条动线段,D在C点右边且,当的最小值为.2.(22-23八年级下·四川成都·期中)如图,在中,,,.如果在三角形内部有一条动线段,且,则的最小值为.
3.(23-24八年级下·浙江·期中)如图,中,,,,点为边上的中点,为边上的两个动点,且,则五边形的周长最小值为.4.(2023八年级上·江苏·专题练习)如图,中,,点、点为边上的点,且,点、分别为边、上的点.已知:,,则四边形的周长的最小值为.
5.(22-23八年级下·辽宁鞍山·期末)如图,河的两岸有,两个水文观测点,为方便联络,要在河上修一座木桥(河的两岸互相平行,垂直于河岸),现测得,两点到河岸的距离分别是5米,4米,河宽3米,且,两点之间的水平距离为12米,则的最小值是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司新春福利活动方案
- 公司活动室建立策划方案
- 公司日常游戏活动方案
- 公司羽毛球运动活动方案
- 公司游艺类拓展活动方案
- 公司整顿活动方案
- 公司聚餐温馨活动方案
- 公司登高节活动方案
- 公司晚会活动策划方案
- 公司环境日活动方案
- 湖南省娄底市涟源市2023-2024学年六年级下学期6月期末英语试题
- 上海市徐汇区市级名校2025届物理高一第二学期期末考试模拟试题含解析
- 天一大联盟2024届高一数学第二学期期末统考试题含解析
- (高清版)JTG 3370.1-2018 公路隧道设计规范 第一册 土建工程
- 【语文】西安外国语大学附属小学(雁塔区)小学五年级下册期末试卷(含答案)
- 新编旅游职业道德 课件 谭为跃 第3-5章 旅行社从业人员道德素养、酒店从业者道德素养、景区点从业人员道德素养
- 小学数学“组题”设计分析 论文
- 附件16:地下室灯带临时照明系统方案
- 中央空调维护保养服务投标方案(技术标)
- 服务认证培训课件
- 风电场反事故措施
评论
0/150
提交评论