




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.3角的平分线的性质【典型例题】◆角平分线性质基本运用1.如图,△ABC的三边AB,BC,CA的长分别为30,40,15,点P是△ABC三个内角平分线的交点,则S△PAB:S△PBC:S△PCA=.2.在四边形ABCD中,∠ADC与∠BCD的角平分线交于点E,∠DEC=115°,过点B作BF∥AD交CE于点F,CE=2BF,∠CBF=∠BCE,连接BE,S△BCE=4,则CE=.3.如图,已知△ABC中BC边上的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC交于点G.求证:(1)BF=CG;(2)AF=(AB+AC).◆角平分线中常见辅助线4.如图,在四边形ABCD中,AB=2,BC=12,CD=18,E为BC边中点,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,则AD的长为.5.如图,D是∠EAF平分线上的一点,若∠ACD+∠ABD=180°,请说明CD=DB的理由.6.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,∠ABD的角平分线与AC交于点E,连接DE.(1)求证:点E到DA.DC的距离相等;(2)求∠BED的度数.7.如图,AD是△ABC的角平分线,点F、E分别在边AC.AB上,连接DE.DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.8.在平面直角坐标系xOy中,点A在x轴的正半轴上运动,点B在y轴的正半轴上运动,△AOB的外角平分线相交于点C,如图1所示,连接CO.(1)求证:CO平分∠AOB;(2)延长CB交∠BAO的平分线于点D,如图2所示,求证:∠D=∠COA.9.如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB,求证:AD=CD+AB.10.如图,在四边形ABCD中,AD∥BC,AE平分∠BAD交DC于点E,连接BE,且AE⊥BE,求证:AB=AD+BC.【练一练】1.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=3,求S△ABC.2.如图,BF是∠DBC的平分线,CF是∠ECB的平分线.(1)请问点F是否在∠BAC的平分线上,试说明理由;(2)猜想∠A与∠BFC的数量关系.3.在四边形ABCD中,CE平分∠BCD交AD于点E,点F在线段CE上运动.(1)如图1,已知∠A=∠D=90°①若BF平分∠ABC,则∠BFC=°②若∠BFC=90°,试说明∠DEC=∠ABC;(2)如图2,已知∠A=∠D=∠BFC,试说明BF平分∠ABC.课后作业:1.如图,△ABC的边AB与△EDC的边ED相交于点F,连接CF.已知AC=EC,BC=DC,∠BCD=∠ACE.(1)求证:AB=ED;(2)求证:FC平分∠BFE.2.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.参考答案【典型例题】◆角平分线性质基本运用1.6:8:3.解:∵点P是△ABC三个内角平分线的交点,∴P点到三边的距离相等,设这个距离为m,∴S△PAB:S△PBC:S△PCA=×AB×m﹣×BC×m﹣×AC×m=AB:BC:AC=30:40:15=6:8:3.故答案为6:8:3.2.4.解:∵∠CBF=∠BCE,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC,∠ECD=∠ECB=4x,设∠ADE=∠EDC=y,∵AD∥BF,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65°②,由①②解得,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF⊥EC,∴CE=2BF,设BF=m,则CE=2m,∵S△BCE=•EC•BF=4,∴×2m×m=4,∴m=2或﹣2(舍弃),∴CE=2m=4,故答案为4.3.证明:(1)连接BE和CE,∵DE是BC的垂直平分线,∴BE=CE,∵AE平分∠BAC,EF⊥AB,EG⊥AC,∴∠BFE=∠EGC=90°,EF=EG,在Rt△BFE和Rt△CGE中∴Rt△BFE≌Rt△CGE(HL),∴BF=CG;(2)∵AE平分∠BAC,EF⊥AB,EG⊥AC,∴∠AFE=∠AGE=90°,∠FAE=∠GAE,在△AFE和△AGE中∴△AFE≌△AGE,∴AF=AG,∵BF=CG,∴(AB+AC)=(AF﹣BF+AG+CG)=(AF+AF)=AF,即AF=(AB+AC).◆角平分线中常见辅助线4.26.解:如图,在线段AD上截取AF=AB,DC=DG,连接EF,EG.∵E是BC的中点,∴BE=CE=BC,∵AB=AF,∠BAE=∠FAE,EA=EA,∴△ABE≌△AFE(SAS),同法可证,△DEG≌△DEC(SAS),∴BE=FE,∠AEB=∠AEF,CE=EG,∠CED=∠GED,∵BE=CE,∴EF=EG,∵∠AED=120°,∠AEB+∠CED=180°﹣120°=60°,∴∠AEF+∠GED=60°,∴∠FEG=60°,∴△FEG是等边三角形.∴FG=GE=EF=BC,∵AD=AF+FG+GD,∴AD=AB+CD+BC=2+18+6=26,故答案为26.5.解:过点D分别作AE,AF的垂线,交AE于M,交AF于N则∠CMD=∠BND=90°,∵AD是∠EAF的平分线,∴DM=DN,∵∠ACD+∠ABD=180°,∠ACD+∠MCD=180°,∴∠MCD=∠NBD,在△CDM和△BDN中,∠CMD=∠BFD=90°,∠MCD=∠NBD,DM=DN,∴△CDM≌△BDN,∴CD=DB.6.证明:(1)过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD,∴EH=EF,∵∠BAC=130°,∴∠FAE=∠CAD=50°,∴EF=EG,∴EG=EH,∴ED平分∠CDG,∴点E到DA.DC的距离相等;(2)∵ED平分∠CDG,∴∠HED=∠DEG,设∠DEG=y,∠GEB=x,∵∠EFA=∠EGA=90°,∴∠GEA=∠FEA=40°,∵∠EFB=∠EHB=90°,∠EBF=∠EBH,∴∠FEB=∠HEB,∴2y+x=80﹣x,2y+2x=80,y+x=40,即∠DEB=40°.7.证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC,∴∠DAF=∠DAG,在△ADF和△ADG中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED8.【解答】证明:(1)过C分别向x轴、y轴、AB作垂线,垂足为H2,H1,H3,∵BC平分∠ABH1,∴CH1=CH3,∵AC平分∠BAH2,∴CH2=CH3,∴CH1=CH2,∴CO平分∠AOB;(2)作射线AE,∵BC为角平分线,∴∠1=∠ABC,∵∠EBD=∠ABC,∠OBD=∠1,∴∠EBD=∠ABD,∵AD平分∠BAO,∴∠OAD=∠BAD,∵∠OBE=∠AOB+∠BAO,∠DBE=∠BAD+∠D,∵∠OBE=2∠DBE,∠BAO=2∠BAD,∴∠D=∠AOB=45°,∵∠COA=AOB=45°,∴∠D=∠COA.9.证明:如图:过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,在△MCD和△MED中∴△MCD≌△MED(AAS),∴CD=DE,同理:AE=AB,∴AD=AE+DE=CD+AB.10.证明:如图,取AF=AD,∵AE平分∠BAD,∴∠DAE=∠EAF,在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴∠AED=∠AEF,∵AD∥BC,∴∠BAD+∠ABC=180°,∵AE⊥BE,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∴∠DAE+∠CBE=180°﹣90°=90°,∴∠ABE=∠CBE,∵∠AEF+∠BEF=∠AEB=90°,∠AED+∠BEC=180°﹣∠AEB=180°﹣90°=90°,∴∠BEF=∠BEC,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴BF=BC,∵AB=AF+BF,∴AB=AD+BC.【练一练】1.解:(1)∵∠B=50°,∠C=70°,∴∠BAC=60°∵AD是△ABC的角平分线,∴∠BAD=∵DE⊥AB,∴∠DEA=90°∴∠EDA=90°﹣∠BAD=60°(2)过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3又AB=10,AC=8,∴.2.证明:(1)点F在∠BAC的平分线上,理由是:如图,过点F作FG⊥AB的延长线于G,作FH⊥AC的延长线于H,作FK⊥BC于K,∵BF是∠DBC的平分线,∴FG=FK,∵CF是∠ECB的平分线,∴FK=FH,∴FG=FH,∴点F在∠BAC的平分线上;(2)猜想:∠BFC=90°﹣∠BAC.证明:设∠ABC=α,∠ACB=β;则∠DBC=∠BAC+β,∠BCE=∠BAC+α,∵BF、CF分别是△ABC的外角∠DBC和∠ECB的平分线,∴∠FBC+∠FCB=+,=,=90°+∠BAC,∴∠BFC=180°﹣90°﹣∠BAC,=90°﹣∠BAC.即猜想成立.3.解:(1)①∵∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CE平分∠BCD,BF平分∠ABC,∴∠CBF=,∠BCF=,∴∠CBF+∠BCF==90°,∴∠BFC=90°;故答案为:90②∵∠BFC=90°,∴∠CBF+∠BCF=90°,∵∠D=90°,∴∠DCE+∠DEC=90°,∵CE平分∠BCD,∴∠DCE=∠BCF,∴∠CBF=∠DEC,由①知:AB∥CD,∴∠ABC+∠BCD=180°,∴∠CBF=∠ABC,∴∠DEC=∠ABC;(2)如图2,延长BF交于点M,∵∠BFC=∠D,∠BFC+∠CFM=180°,∴∠CFM+∠D=180°,∴∠FMD+∠DCF=180°,∵∠FMD+∠EMF=180°,∴∠DCF=∠EMF,∵CE平分∠BCD,∴∠DCF=∠BCF,∴∠BCF=∠EMF,∵∠EFM=∠BFC,∴∠FEM=∠CBF,∵∠CFB=∠A,同理得∠FEM=∠ABF,∴∠ABF=∠CBF,∴BF平分∠ABC.课后作业:1.证明:(1)∵∠BCD=∠ACE,∴∠BCD+∠ACD=∠ACE+∠ACD,即∠BCA=∠DCE,在△ABC与△EDC中,∴△ABC≌△EDC(SAS),∴AB=ED;(2)过点C作CG⊥AB,CH⊥DE,垂足分别为G,H,∵△ABC≌△EDC,∴∠B=∠D,∵CG⊥AB,CH⊥DE,∴∠BGC=∠DHC=90°,在△BCG与△DCH中,∴△BCG≌△DCH(AAS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 梦幻的星空我的科幻想象作文(13篇)
- 我的语文老师记一位让人敬佩的老师作文13篇
- 2025年钻采设备专用件项目提案报告模板
- 冠心病的常见病因和症状
- 2025年公务员录用考试审计专业试卷(审计学科发展研究)
- 2025电子商务师(高级)考试试卷:电子商务大数据与人工智能应用试题
- 动物朋友们幼儿园动物主题写作(10篇)
- 煤炭燃烧效率提升与清洁能源产业融合的2025年市场分析报告001
- 2025年病种质量控制方案试题
- 单位暑假工劳动协议书
- 投稿版权转让协议书
- 外研版(三起)英语三年级上册全册课件
- 【部编版】三年级下册道德与法治《期末测试卷》(含答案)
- 翎云教育试卷二年级下册数学
- 2022年全球及射频微波仪器行业发展现状分析
- 经皮胃镜下胃造瘘空肠管置入术
- 暑期托管服务考核表
- 浅谈心理护理沟通技巧
- 哈萨克斯坦共和国有限责任公司和补充责任公司法
- 新hsk4级书写讲解
- 乡烤烟生产工作总结及工作打算
评论
0/150
提交评论