版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10July2024|5:03PMEDT
Someinvestorsandmarketobserversarguethattheindustryisonthecuspofa
MarkDelaney,CFA
+1(212)357-0535|
breakthroughinautonomousvehicle(AV)scalingdrivenbynewAIandGPU
mark.delaney@GoldmanSachs&Co.LLC
technology,whileothersarguethatbroad-basedAVdeploymentsmayneveroccur.
KotaYuzawa
+81(3)4587-9863|kota.yuzawa@
Thebottom-lineisthatwebelieveimprovedAItechnologywillhelpthe
GoldmanSachsJapanCo.,Ltd.
industryreachhigherlevelsofperformance,althoughwealsobelievethat
AllenChang
+852-2978-2930|allen.k.chang@
widescaleAVadoptionisstillatleastafewyearsawayasabasecase.We
GoldmanSachs(Asia)L.L.C.
believethatgloballevel3(L3)ADASpenetration(e.g.vehiclesthatcan
GeorgeGalliers
+44(20)7552-5784|
situationallyhaveeyes-offdriving,suchasonahighway)willreach10%ofthe
george.galliers@
GoldmanSachsInternational
marketfornewvehiclesalesin2030,withlevel4orAVs(e.g.eyes-offina
TinaHou
givenarea,suchasarobotaxiinacity)at2.5%in2030.Thisimpliesthatlevel4
+86(21)2401-8694|
tina.hou@
(L4)volumeswillcontinuegrowing,albeitgenerallyforcommercialusecases
GoldmanSachs(China)SecuritiesCompanyLimited
likerobotaxisintheneartointermediateterm.
EricSheridan
+1(917)343-8683|eric.sheridan@
WeassumemostoftheADAS(advanceddriverassistancesystems)andAVindustryvolumegrowthinthenextfewyearswillcomefrompartially
GoldmanSachs&Co.LLC
ToshiyaHari
+1(646)446-1759|toshiya.hari@
autonomousL2/L2+vehiclesthatrequiredriversupervision.Weassume
GoldmanSachs&Co.LLC
DaikiTakayama
L2/L2+mixwillrisefromabout20%ofsalesthisyeartoabout30%in2027.
+81(3)4587-9870|
daiki.takayama@
GoldmanSachsJapanCo.,Ltd.
OurAVforecastimpliesthataglobalfleetofafewmillioncommercialAVs
BenMiller
usedforridesharecouldbeontheroadin2030.Althoughthiswouldcomprise
+1(917)343-8674|
ler@
lessthan1%oftheglobalcarparcofover1bnvehicles,itcouldresultina
GoldmanSachs&Co.LLC
>$25bnmarketforpersonalmobilityfromrobotaxis.
LincolnKong,CFA
+852-2978-6603|lincoln.kong@GoldmanSachs(Asia)L.L.C.
WebelievethatstocksinvestorsshouldownonthisthemeincludeNvidia,Uber,
JerryRevich,CFA
Mobileye,Renesas,Baidu,DesaySVandQuanta.
+1(212)902-4116|jerry.revich@GoldmanSachs&Co.LLC
GivenadvancesinAItechnology,includingthelatestNvidiaprocessorsaswellas
DanielaCosta
+44(20)7774-8354|
differenttrainingapproaches(e.g.afully“end-to-end”approachofcamera/sensor
daniela.costa@
GoldmanSachsInternational
inputsinanddrivingpolicyoutthatcanpotentiallyhelpsolvedifficultedgecases
VerenaJeng
especiallyifthereisenoughdata,ora“compoundapproach”thatutilizesmachine
+852-2978-1681|verena.jeng@GoldmanSachs(Asia)L.L.C.
learning/AIbutwithsubsystemsthatcanallowforefficiencyandverificationofthe
RyoHarada
solution),weattempttobetterunderstandiftherateofprogresstoward
+81(3)4587-9865|ryo.harada@GoldmanSachsJapanCo.,Ltd.
wider-scaleadoptionofautonomywillaccelerate,includingL3andL4.Seeour
AlexanderDuval
+44(20)7552-2995|
GoldmanSachsdoesandseekstodobusinesswithcompaniescoveredinitsresearchreports.Asaresult,
investorsshouldbeawarethatthefirmmayhaveaconflictofinterestthatcouldaffecttheobjectivityofthis
report.Investorsshouldconsiderthisreportasonlyasinglefactorinmakingtheirinvestmentdecision.ForRegACcertificationandotherimportantdisclosures,seetheDisclosureAppendix,orgoto
..i//eS.html.Analystsemployedbynon-USaffiliatesarenotregistered/qualifiedasresearch
GlobalAutos&IndustrialTech
10July20242
“AI101”sectionofthisreportformoredetailsonAIapproacheslikeend-to-end.
WiththisreportweupdateourglobalADASandAVforecastsbasedoninputsfromourglobalauto,industrial,andTMTteammembers.
Keyworkinthisreport-
1)ExaminationofTesla’stechnicalprogress,andprogressofvariousAVcompanyefforts
2)IllustrativecostpermileforanAVrobotaxibusinesswithaverticallyintegratedmodel,andadiscussiononrideshareandAVbusinessmodels
3)UpdatedglobalADAS/AVforecast
4)Discussionofnewelectronicarchitecturesandimplicationsforsemis
5)2030EPSscenarioanalysisforTesla
PMSummary
Wethinkitisnotablethattherearenowautonomousvehiclesontheroad.ThereareasmallnumberofAVsoperatinginpartsofmajorcitiessuchasSanFrancisco,
Phoenix,BeijingandWuhan.
However,thetechnologyhasyettobebroadlydeployed.Keyissuesgatinggrowtharerelatedtounderstandingcomplextraffic/drivingscenarios(oredgecases),along
withbusinessandregulatoryfactors.WhileAVsfromcompaniessuchasBaidu(ApolloGo),WaymoandPony.aimayalreadybesaferintermsofaccidentspermilethanhumandriverswithingeofencedareas(e.g.perdatafromleadingcompaniessuchasWaymo,albeitwithAVsontheroadtodaytypicallyabletoqueryahumaninaremotelocationforassistanceifneeded),therecontinuetobecaseswhereAVsgetconfusedorstuckinscenariosahumancouldlikelynavigate.
Weseektobetterunderstandwherethetechnologyandindustrycurrentlystands,andifnewAItechnologycanhelptoaccelerateprogresstowardwider-scaleadoptionofL3(e.g.situationallyeyes-offandhands-offdriving,suchasonahighway)orL4(e.g.
eyes-offinagivenarea,suchasarobotaxiinacity)autonomy.
ResearchonAIscalingdoessuggestthataddedcompute,largertrainingdatasets,
andimprovedmodelarchitecturesshouldcontributetobetterAImodel
performance.MicrosoftCEOSatyaNadelladuringakeynoteatMicrosoftBuild2024notedthatsimilartohowMoore’sLawdrovetechnologyinthepast,AItechnologynowallowscomputeperformancefortrainingdeepneuralnetworkstoroughlydoubleevery6months(referencingresearchfromEpoch).
WeconsiderTeslatobeoneoftheleadersinautonomoustechnology.Tesla’ssupervisedfullselfdriving(FSD)technology,whichisanL2/L2+systemasit
requiresthedrivertopayattentionandbepreparedtotakeoveratalltimes,isalreadysaferthanvehiclesdrivenmanuallyintermsofaccidentspermiledatafromTesla(Exhibit1).Tesla’sdatashowsthatin2023accidentswithsupervisedFSD
GlobalAutos&IndustrialTech
10July20243
(whichisTesla’ssolutionthatwillallowthecartodopointtopointnavigation,andworksonhighwaysandcitystreets)occurredevery4to5millionmiles,andaccidentson
Autopilot(whichincludesmorebasicfeaturesliketrafficawarecruisecontrolandlanekeeping)occurredevery5to6mnmiles(althoughthesearegenerallyhighwaymiles),comparedtoonceevery600-700KmilesfortheUSonaverage.In1Q24,accidentswithAutopilothappenedonceevery7-8millionmiles.
Exhibit1:TeslaADASsystemmilesdrivenbeforeanaccident
Milesdrivenbeforeaccident(mns)
6
5
4
3
2
1
0
201820192020202120222023
TeslaFSDBeta/SupervisedTeslaAutopilotTeslanon-AutopilotUSaverage
Source:Companydata,FHWA,NHTSA,GoldmanSachsGlobalInvestmentResearch
Whileweconsiderthesesafetystatisticstobeimportant,measuringifTesla
driversgetinfeweraccidentswhileusingthetechnologywithactivedriver
supervision(andtakingoverifthereisanissue)isnotthesameaswhetherthevehicleswouldbebetterand/orsaferwhenunsupervised(e.g.L3/L4capability).
Wethereforebelieveitisalsohelpfultogaugethepercentageofdriveswithno
interventionsandinterventionspermiletoassesswhenTeslamayreachunsupervisedcapability(e.g.L3orL4).Thereareotherperformancemetricsbeyondjustaccidentstoconsider(e.g.properlaneselection,smoothdrivingbehavior,andrespondingto
emergencyvehicles).
WhileTesladoesn’tdiscloseinterventiondataonFSD(andinterventionsareatthe
discretionofthedriverwhichcancomplicateananalysisofthissort),somedrivers
submitinterventiondatatoTeslaFSDtrackerandthisshowsthatthepercentageof
driveswithoutaninterventionhasgoneup,andabout70%ofdriveswiththelatestversionofFSDhavebeenno-interventionperthiscrowd-sourceddata(Exhibit2).Tesla’slatestFSDversion(V12)wasdevelopedwithmorerelianceonAI,oran
“end-to-end”approachofvision/camerainputsinanddrivingpolicyoutthatcanpotentiallyhelpsolvedifficultedgecasesespeciallyifthereisenoughdata.
Moreover,thissamedatasuggestscriticalinterventionsoccurevery~300miles
withFSD.Whilewethinkitwouldbewrongtoassumethateverydisengagementwouldhaveresultedinacrash,italsosuggeststhetechnologycouldbesome
timeofffrombeingL3orL4giventhe600-700KmilestraveledbetweenaccidentsforthetypicalvehicleintheUS.OurownrecentridesinFSDenabledvehiclesalso
suggestthatFSDisimpressivebutnotyetreadytobeL3orL4,inouropinion.
10July20244
Exhibit2:PercentofTesladriveswithoutaninterventionpercrowdsourceddata
100%90%80%70%60%50%40%30%20%10%
0%
Feb-22
May-22
Aug-22
Nov-22
Feb-23
May-23
Aug-23
Nov-23
Feb-24
May-24
Aug-24
Nov-24
Feb-25
May-25
Aug-25
Nov-25
Feb-26
May-26
Aug-26
Nov-26
Feb-27
May-27
Aug27
%ofdriveswithnodisengagements--------SteadyFSDscalingRapidFSDscaling
----FSDhitsceiling
Source:TeslaFSDTracker,GoldmanSachsGlobalInvestmentResearch
ExtrapolatingtherateofnointerventiondrivesimpliesinourviewthatTeslacouldreachL3onhighwaysatfullspeeds,atleastinclearweather,inthenexttwotothreeyears,especiallyifTesla’ssignificantinvestmentsintechnology(Teslaisspending$3-$4bnonNvidiacomputethisyear)anduseofanend-to-endAIapproachhelp.Giventheaddedcomplexitiesofoperatingindenseurbanenvironmentsandhighbarforsafetyin
unsuperviseddriving,weassumegeneralizedL4wouldtakelongertoreach.Webelievethatutilizinghumanassistanceinaremotelocation(similartocurrentrobotaxieffortslikeWaymoandBaidu)couldallowTeslatoreachL4functionalitysoonerthanitis
otherwisetrackingtoalbeitwithaddedcostandscalingchallenges.
LookingatAVeffortsbesidesTesla,whileaccidentdatahasbeenpromising(e.g.
Waymo’sanalysisshowsatleast57%fewervehiclecrashespermilethanahuman
driverwithitsL4robotaxis),thecurrentdeployments(e.g.fromWaymo,Pony.aiandBaiduApolloGo)havethusfarbeentargetedintermsofdeployments,andlimitedtocertainsectionsofselectcities(wehavemoredetailsinthe“CompanyADAS
andAVefforts”sectionofthisreport).Whilethismaybedueinparttotechnologyscalabilityissues(e.g.relyingondetailed3-Dmaps,needinghumanremoteassistanceattimes,anddifficultyinhightraffic/complexscenarioslikeconstruction),wealso
believeeconomicconsiderationsareafactor.AsweshowinExhibit3,thecostsper
milearelikelyveryhighatlowvolumesdueinparttothecostofthehardware/computeandhumanremoteassistance(notethatTeslacouldhaveacostadvantagewithits
AV/ADAStechnologygivenitsverticalintegrationforinferencechips,scale,anditslimitedsensorsuite).
Assumingthatdepreciationandinsurancecostsnormalizetolevelsonparwithhumandrivencommercialrideshareentities,weestimatethatvehicledrivingcostspermileforanAVat50-75kmilesdrivenperyearpervehicleandroughly10carsperremote
operatorcouldreach~$1.00permile(weshowthisforillustrativepurposesoccurringinthe2030timeframeinExhibit3).Costswithcorporateoverhead/R&Dwouldbehigher.Longer-termthesecostscoulddecline.
GlobalAutos&IndustrialTech
10July20245
Exhibit3:IllustrativecostmodelforaverticallyintegratedAVridesharecompany
2023
2024E
2025E
2030E
2035E
2040E
AVcostpervehicle($US)
125,000
100,000
85,000
50,000
50,000
50,000
Milesdrivenpercar
22,500
25,000
27,500
75,000
100,000
125,000
Vehiclesinserviceyearend
177
259
478
2,570
18,597
72,967
Wagesperremoteoperator
76,875
78,797
80,373
87,870
94,661
99,982
Carsperoperator
3
3
3
10
30
35
Vehicledrivingcosttpermile
$3.35
$3.13
$2.94
$0.98
$0.70
$0.58
R&D($USmn)
825
908
998
1,521
1,960
2,502
SG&A($USmn)
230
265
304
612
1,127
1,479
Tottalcosttpermile
$268.71
$184.11
$102.03
$12.04
$2.36
$1.02
Source:GoldmanSachsGlobalInvestmentResearch
Forcontext,Lyftcommittedtopayingdriversatleast70%ofriderpaymentsperweekafterexternalfeeslikecommercialinsurance(weestimate~$0.30permile)are
subtracted,andLyftestimatesthatthereare~$0.31/mileofexpensesassociatedwithoperatingthecarforthedriver(i.e.fuelcosts,maintenance,cleaning,anddepreciation).WenotethattheaveragecosttoownapersonalcarintheUSis~$0.80permileperAAA,assuming15Kmilesdrivenperyear.
Inaddition,ourrecentdiscussionswithAVoperatorsinChinasuggestthatAV
companiessofarneedtochargeadiscounttoconventionalrideshareplatformssuchasDiDiofatleast30%inordertoattractuserstothenetworkandtocompensatefor
factorslikelimitstothelocationsthatAVscanpresentlyreachduetogeofencingrestrictions.
Finally,regulatory/liabilityandsocietalconcernsmaygatetherateofgrowth.For
example,Cruisepausedcommercialoperationsafterasevereaccidentinvolvingoneofitsrobotaxis,andcommunitiesmayhaveamuchhighersafetybarforAVsthancurrenthumanperformance.
AsabasecasewenowassumethatgloballyL3enabledvehiclescouldreach10%ofindustryunitsalesvolumesin2030,andthatL4willbe2.5%in2030drivenbycontinuedtechnologicaladvancement(includingfromAI)andlowercostsofrelevanthardware(e.g.lidarandtheintroductionofpurposebuiltAVplatforms).However,ifthelatestAItechnologyhelpstheindustrytoaccelerateautonomousvehicledevelopmentfasterthanweexpect,thenwebelievethiscouldoccurafewyearsearlier.
GlobalAutos&IndustrialTech
10July20246
Exhibit4:GlobalADASandAVL3-5penetrationrateasapercentofnewlightvehiclesales
Globallevel3/4/5penetrationrate
70%
60%
50%
40%
30%
20%
10%
0%
BullBase
Source:Companydata,GoldmanSachsGlobalInvestmentResearch
OurAVforecastimpliesthataglobalfleetofafewmillioncommercialAVsused
forridesharecouldbeontheroadin2030.Althoughthiswouldcompriselessthan1%oftheglobalcarparcofover1bnvehicles,itcouldresultina>$25bnmarketforpersonalmobilityfromrobotaxis(dependingonfactorssuchasASPs,tripsper
day,andaveragemilestraveledpertrip).
Exhibit5:Weestimatethemarketin2030forrobotaxiscouldbe>$25bn
Revenuepertrip
Tripsper
robotaxiperday
150
GlobalAVsinoperation(000s)
1,3502,0002,650
2030marketscenariosforrobotaxis($mn)
750
3,300
4,000
$5
2
$548
$2,738
$4,928
$7,300
$9,673
$12,045
$14,600
4
$1,095
$5,475
$9,855
$14,600
$19,345
$24,090
$29,200
6
$1,643
$8,213
$14,783
$21,900
$29,018
$36,135
$43,800
8
$2,190
$10,950
$19,710
$29,200
$38,690
$48,180
$58,400
10
$2,738
$13,688
$24,638
$36,500
$48,363
$60,225
$73,000
12
$3,285
$16,425
$29,565
$43,800
$58,035
$72,270
$87,600
14
$3,833
$19,163
$34,493
$51,100
$67,708
$84,315
$102,200
$7
2
$767
$3,833
$6,899
$10,220
$13,542
$16,863
$20,440
4
$1,533
$7,665
$13,797
$20,440
$27,083
$33,726
$40,880
6
$2,300
$11,498
$20,696
$30,660
$40,625
$50,589
$61,320
8
$3,066
$15,330
$27,594
$40,880
$54,166
$67,452
$81,760
10
$3,833
$19,163
$34,493
$51,100
$67,708
$84,315
$102,200
12
$4,599
$22,995
$41,391
$61,320
$81,249
$101,178
$122,640
14
$5,366
$26,828
$48,290
$71,540
$94,791
$118,041
$143,080
$9
2
$986
$4,928
$8,870
$13,140
$17,411
$21,681
$26,280
4
$1,971
$9,855
$17,739
$26,280
$34,821
$43,362
$52,560
6
$2,957
$14,783
$26,609
$39,420
$52,232
$65,043
$78,840
8
$3,942
$19,710
$35,478
$52,560
$69,642
$86,724
$105,120
10
$4,928
$24,638
$44,348
$65,700
$87,053
$108,405
$131,400
12
$5,913
$29,565
$53,217
$78,840
$104,463
$130,086
$157,680
14
$6,899
$34,493
$62,087
$91,980
$121,874
$151,767
$183,960
Source:Companydata,GoldmanSachsGlobalInvestmentResearch
TherearealsosignificantsocietalbenefitsfromADASandAVtechnology,asabout40kpeopledieintrafficfatalitiesintheUSannuallyperNHTSA,andover1millionpeopledieeachyeargloballyinaccidentspertheWorldHealthOrganization.
GlobalAutos&IndustrialTech
10July20247
AI101-WhatisAI,andwhat’sthedifferencebetween“end-to-end”anda“compoundapproach”?
Inthissectionofthereport,weexplainkeyconceptsforartificialintelligence,asdetailedinapriorreportledbyToshiyaHari.
ArtificialIntelligence:Artificialintelligencedescribesascienceofsimulatingintelligentbehaviorincomputers.Itentailsenablingcomputerstoexhibithuman-likebehavioraltraitsincludingknowledge,reasoning,commonsense,learning,anddecisionmaking.
Machinelearning:Machinelearningisabranchofartificialintelligenceandentails
enablingcomputerstolearnfromdatawithoutbeingexplicitlyprogrammed.For
example,thecomputerlearnshowtoidentifyanobjectsuchasadogoracatwithdata.
Neuralnetworks:AneuralnetworkinthecontextofAI/machinelearningdescribesatypeofcomputerarchitecturethatsimulatesthestructureofahumanbrainontowhichAI/machinelearningprogramscanbebuilt.Itconsistsofconnectednodesinaggregatethatcansolvemorecomplexproblemsandlearn,liketheneuronsinahumanbrain,suchasinExhibit6.Theprocessofbackpropagationisusedinmachinelearningto
adjusttheweightoftheneuronsintheneuralnetandstrengthenthepathstoproduceacorrectanswer(e.g.toidentifyanobject).
Exhibit6:Illustrativeneuralnetframework
Source:GoldmanSachsGlobalInvestmentResearch
Deeplearningisasubsetofmachinelearningwithahierarchyoflayersinaneuralnet,withdeeplearninghavingmorelayers.Forexampleinthedogorcatexample,differentlayerscouldcorrespondtothekeydefiningfeaturesofagivenanimal.
CompoundAIsystemvs.end-to-endapproach:TherearedifferentapproachestoAIdevelopmentinthecontextofautonomousdriving,withonebeinganend-to-enddesign(asdescribedmorefullyinthisarticle),whichistheapproachTeslahasmovedtoandisasinglemodelthattakesthevisioninputsinanddirectlyoutputsthedrivepolicylike
steeringandbraking.Itreducestheneedforhumancoding,andmayhelpsolvethe
GlobalAutos&IndustrialTech
10July20248
kindofedgecasesthathavelimitedAVprogressthusfar.AnalternativeapproachisacompoundsolutionthatcanutilizeAIfordifferentsubsystemsorinputs.Thesolutioncanthenusethistogetherwithgluecodeand/oroverlayotherrules/factors(e.g.
ensuringcertaintrafficlawsareobeyed).WhilethereisadebateifthiswilllimitwhatAIcanachieveintermsofhardtounderstandedgecasescenarios,itcanhaveefficiencies(e.g.ChatGPTdoesn’tneedtouseAItrainingtosolvebasicmath,itcanjustquerya
calculatormodule,asdescribedinthisblogontheprosandconsofanend-to-endvs.acompoundapproach)andacompoundsystemcanbeeasiertounderstand/verify(whichisespeciallyimportantindrivingasamistakefromAIcouldbefatal).CompoundAI
approachesstillmakeuseofadvancedAItechniquesliketransformers.Wealsonote
thatablendofapproachescanbeused,suchasanend-to-endmodelasaconsiderationforthedrivingdecisionsbutwithcertainpolicyrulesthatareprogrammed.
Willmorecomputeandanend-to-endapproachhelpTesla’sFSDprogress?
Teslahadexpectedtohavefullyautonomousvehiclesreadyin2020per
commentsatits2019AutonomyInvestorDay,andtheindustrymorebroadlyhasstruggledtomeetitsAVtargets.InthissectionwediscussifnewerAItechnologycanhelpTeslatomeetthisobjective.
Specifically,inMay2023,TeslaannouncedonXthatitwaswouldadoptanend-to-endAIapproachwithVersion12ofitssupervisedFullSelfDriving(orFSD)product.Recallthatanend-to-endapproachisvisionin(fromthecameras)anddrivingpolicy(suchassteeringandbraking)out.Moreover,onits1Q24earningscall,Teslacommentedthatitwasnolongercomputeconstrained.
ResearchonAIscalingdoessuggestthataddedcompute,largertrainingdatasets,andimprovedmodelarchitecturesshouldcontributetobetterAImodelperformance.
MicrosoftCEOSatyaNadelladuringakeynoteatMicrosoftBuild2024notedthatsimilartohowMoore’sLawdrovetechnologyinthepast,AItechnologynowallowscomputeperformancefortrainingdeepneuralnetworkstoroughlydoubleevery6months
(referencingresearchfromEpoch).
Oncompute,Teslaisexpectingtohavecommissionedandinstalledaround85KH100GPUsfromNvidiabytheendof2024,upfrom35Kasofits1Q24earningscall.Teslaplanstoinvestabout$3-$4bninNvidiahardwarein2024.TheH100improves
performancebyupto9XforAItrainingandupto30XforAIinferenceovertheprior
A100GPUforlargelanguagemodel(LLM)transformerdevelopmentperNvidia.
Additionally,NvidianotedthattheupcomingGB200withBlackwellcouldofferupto30XbetterperformancecomparedtothesamenumberofNvidiaH100sforLLMinferenceworkloadswithupto25Xlowercostandenergyconsumption.
WeconsiderTeslatobeoneoftheleadersinautonomoustechnology.Tesla’s
supervisedFSDtechnology,whichisanL2/L2+systemasitrequiresthedrivertopayattentionandbepreparedtotakeoveratalltimes,isalreadysaferthana
10July20249
humandriverintermsofaccidentspermileperdatafromTesla(Exhibit7).Tesla’sdatashowsthatin2023accidentswithFSD(whichisTesla’ssolutionthatallowsthecartodopointtopointnavigation,andworksonhighwaysandcitystreets)occurredevery4to5millionmiles,andaccidentsonAutopilot(whichincludesmorebasicfeaturesliketrafficawarecruisecontrolandlanekeeping)occurredevery5to6mnmiles(althoughthesearegenerallyhighwaymiles),comparedtoonceevery600-700KmilesfortheUSonaverage.In1Q24,accidentswithAutopilothappenedonceevery7-8millionmiles.
Exhibit7:TeslaADASsystemmilesdrivenbeforeanaccident
Milesdrivenbeforeaccident(mns)
6
5
4
3
2
1
0
201820192020202120222023
TeslaFSDBeta/SupervisedTeslaAutopilotTeslanon-AutopilotUSaverage
Source:Companydata,FHWA,NHTSA,GoldmanSachsGlobalInvestmentResearch
Whileweconsiderthisanimportantmetric(withrealworldimplications),
measuringifTesladriversgetinfeweraccidentswhileusingthetechnologywithactivedriversupervision(andtakingoverifthereisanissue)isnotthesameaswhetherthevehicleswouldbebetterand/orsaferwhenunsupervised(e.g.L3/L4capability).Wethereforebelieveitisalsohelpfultogaugethepercentageofdrives
withnointerventions,andinterventionspermile,toassesswhenTeslamayreachunsupervisedcapability(e.g.L3orL4).
WhileTesladoesn’tdiscloseinterventiondataonFSD(andinterventionsareatthe
discretionofthedriverwhichcancomplicateananalysisofthissort),somedrivers
submitinterventiondatatoTeslaFSDtrackerwhichshowsthatthepercentageofdriveswithoutaninterventionhastrendedhigherwithFSDV12(theversionwhenTeslamovedtoanend-to-endAIapproach).About70%ofdrivesonV12havebeen
no-interventionperthiscrowd-sourceddata,whichisanimprovementfromV10andV11.
GlobalAutos&IndustrialTech
10July202410
Exhibit8:TeslaFSDperformancebyversionpercrowd-sourceddata
80%
%ofdriveswithnodisengagements
70%
60%
50%
40%
30%
20%
10%
0%
12
.11.3
10.6911.4
10.11
o10.12
2/1/2022
3/1/2022
4/1/2022
5/1/2022
6/1/2022
7/1/2022
8/1/2022
9/1/2022
10/1/2022
11/1/2022
12/1/2022
1/1/2023
2/1/2023
3/1/2023
4/1/2023
5/1/2023
6/1/2023
7/1/2023
8/1/2023
9/1/2023
10/1/2023
11/1/2023
12/1/2023
1/1/2024
2/1/2024
10.10
Source:TeslaFSDTracker
Moreimportantly,whatdoesthisdatasuggestforwhenTeslacouldreachL3or
eyes-offcapability?Therearedifferentpotentialextrapolationsofthedata,includingrapidscaling,slowerbutsteadyprogress,oraneventualceilingonimprovement.Whilewerecognizethatthisdataisimperfect,itwouldimplyinouropinionthatTeslaistracking
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年江苏省公务员录用考试《行测》真题(B类)及答案解析
- 2022年公务员多省联考《申论》真题(黑龙江省市卷)及答案解析
- 四川省成都市树德2024-2025学年高一上学期期中考试语文试题(含答案)
- 简单课件作品
- 人教版六年级下册语文课件
- 治疗呼吸疾病和呼吸失调的吸入式医药制剂市场洞察报告
- 空调装置产业深度调研及未来发展现状趋势
- 七年级下册20课古诗课件
- 真空杯市场发展现状调查及供需格局分析预测报告
- 球及球拍专用袋产业规划专项研究报告
- 装饰公司组织架构图
- 人教版高中物理新旧教材知识对比
- java数据库销售管理系统实验报告完整版(doc76页)完美版
- 投标人对工程合理化建议
- 液压电梯安装自检报告-数据填写范本
- 《后羿射日故事》PPT课件.ppt
- 马克思的资本有机构成理论与当代中国的经济发展
- 《秸秆还田》ppt课件
- 食品加工企业安全设计设施专篇
- 颈动脉斑块科普知识PPT参考幻灯片
- 反射隔热涂料施工方案(完整版)
评论
0/150
提交评论