版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省苏州市高新区第四中学十校联考最后数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)2.如图,正比例函数y=x与反比例函数y=4x的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>23.估计的值在()A.4和5之间 B.5和6之间C.6和7之间 D.7和8之间4.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣25.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1066.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位 B.将l1向右平移2个单位C.将l1向上平移2个单位 D.将l1向下平移2个单位7.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.8.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为A. B. C. D.9.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b210.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm二、填空题(共7小题,每小题3分,满分21分)11.如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°.12.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.13.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.14.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.15.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.16.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.17.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.三、解答题(共7小题,满分69分)18.(10分)某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)这次调查中,一共调查了多少名学生?(2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;(3)若该校有2000名学生,请估计选择“A:跑步”的学生约有多少人?19.(5分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)20.(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在地时距地面的高度为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?21.(10分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使∠DAE=90°,连接CE.探究:如图①,当点D在线段BC上时,证明BC=CE+CD.应用:在探究的条件下,若AB=,CD=1,则△DCE的周长为.拓展:(1)如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为.(2)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.22.(10分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.23.(12分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.证明:∽;若,求的值;如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.24.(14分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).2、D【解析】试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于y=4考点:1.反比例函数与一次函数的交点问题;2.数形结合思想的应用.3、C【解析】
根据,可以估算出位于哪两个整数之间,从而可以解答本题.【详解】解:∵即
故选:C.【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.4、C【解析】分析:由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.详解:∵在中,﹣6<0,∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,∵当x=﹣3时,y=2,当x=﹣2时,y=3,∴当﹣3<x<﹣2时,2<y<3,故选C.点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.5、C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.6、C【解析】
根据“上加下减”的原则求解即可.【详解】将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.故选:C.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.7、B【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF=,再证明∠BFC=90°,最后利用勾股定理求得CF=.【详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.8、C【解析】分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:1800000这个数用科学记数法可以表示为故选C.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.9、D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D10、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质二、填空题(共7小题,每小题3分,满分21分)11、58【解析】
根据HL证明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=13°,即可求出答案.【详解】解:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt△CBF和Rt△ABE中∴Rt△CBF≌Rt△ABE(HL),∴∠FCB=∠EAB,∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,∴∠BCF=∠BAE=13°,∴∠ACF=∠BCF+∠ACB=45°+13°=58°故答案为58【点睛】本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.12、.【解析】
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:,故答案为.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.13、【解析】
仿照已知方法求出所求即可.【详解】令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案为:.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14、【解析】
由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.【详解】∵六边形ABCDEF是正六边形,
∴∠AOB=60°,
∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴∴S阴影=S△OAB-S扇形OMN=故答案为【点睛】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.15、1-1.【解析】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.【详解】将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案为:1-1.【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.16、【解析】
根据概率的概念直接求得.【详解】解:4÷6=.故答案为:.【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.17、4【解析】
根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.【详解】如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即当x=时,代数式有最小值,此时为:.故答案是:4.【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.三、解答题(共7小题,满分69分)18、(1)一共调查了300名学生;(2)36°,补图见解析;(3)估计选择“A:跑步”的学生约有800人.【解析】
(1)由跑步的学生数除以占的百分比求出调查学生总数即可;(2)求出跳绳学生占的百分比,乘以360°求出占的圆心角度数,补全条形统计图即可;(3)利用跑步占的百分比,乘以2000即可得到结果.【详解】(1)根据题意得:120÷40%=300(名),则一共调查了300名学生;(2)根据题意得:跳绳学生数为300﹣(120+60+90)=30(名),则扇形统计图中“B:跳绳”所对扇形的圆心角的度数为360°×=36°,;(3)根据题意得:2000×40%=800(人),则估计选择“A:跑步”的学生约有800人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.19、17.3米.【解析】分析:过点C作于D,根据,得到,在中,解三角形即可得到河的宽度.详解:过点C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:这条河的宽是米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.20、(1)10;1;(2);(3)4分钟、9分钟或3分钟.【解析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(10-100)÷20=10(米/分钟),b=3÷1×2=1.故答案为:10;1.(2)当0≤x≤2时,y=3x;当x≥2时,y=1+10×3(x-2)=1x-1.当y=1x-1=10时,x=2.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3.答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.21、探究:证明见解析;应用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】试题分析:探究:判断出∠BAD=∠CAE,再用SAS即可得出结论;
应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论.试题解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
应用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根据勾股定理得,DE=,
∴△DCE的周长为CD+CE+DE=2+
故答案为2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE
∴BC=CD-BD=CD-CE,
故答案为BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案为BC=CE-CD.22、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.【解析】
(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(1)根据含30°的直角三角形的性质证明即可;(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.【详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《“精彩极了”和“糟糕透了”》教案-2021-2022小学年语文五年级上册
- 四川省德阳市广汉市广汉中学钟声学校2024-2025学年九年级上学期12月月考化学试题(含答案)
- 山东省聊城市第二中学20242025学年高三12月月考政治试题
- 河南省周口市沈丘县中英文学校等2024-2025学年八年级上学期11月期中数学试题(含答案)
- 2024-2025学年高一【数学(人教A版)】正切函数的性质与图象-教学设计
- 高等数学II-2知到智慧树章节测试课后答案2024年秋重庆大学
- 安徽省八公山区2023-2024年发展改革委公务员招录事业单位招聘考试招录87人真题附答案(A卷)
- 计算机基础应用试题
- 《用人单位工伤预防培训指南第4部分:培训效果评估》征求意见稿
- 《定积分的简单应用》课件
- 汉语基础课件
- 物业安保服务标准与操作规范
- 《饮湖上初晴后雨》优秀课件
- 六年级上册美术课件-18.纸柱造型 |苏少版 (共26张PPT)
- 劳动人事争议仲裁具体申请书具体申请人为个人
- ESH管理方案介绍材料中文版
- 2022年平凉市庄浪县妇幼保健院医护人员招聘考试笔试题库及答案解析
- 《卫星导航定位》课程教学大纲
- 李镇西《爱心与教育》全文
- 电焊工_3级_鉴定要素细目表(共14页)
- 带教述职报告课件
评论
0/150
提交评论