![科技英语阅读与写作_第1页](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE351.jpg)
![科技英语阅读与写作_第2页](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE3512.jpg)
![科技英语阅读与写作_第3页](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE3513.jpg)
![科技英语阅读与写作_第4页](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE3514.jpg)
![科技英语阅读与写作_第5页](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE3515.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
龙终建了科技之冬
科技英语阅读与写作
题目:CellSegmentationinDigitalHolographic
Images
学院:____________电子工程学院_________
专业:信号与信息处理
姓名:_________________________________
学号:_____________1602120898___________
Partner:
姓名:_______________张润东_____________
学号:1601120188
CELLSEGMENTATIONINDIGITALHOLOGRAPHICIMAGES
NohaEl-Zehiry'OliverHayden2andAliKamen1
,MedicalImagingTechnologies,SiemensHealthcare,Princeton,NJ,USA
2In-VitroDXandBioscience,SiemensHealthcare,Erlangen,Germany
ABSTRACT
DigitalHolographicMicroscopy(DHM)isbecomingrecentlyverypopularfor
cellimaging.①(1)Themainadvantageofdigitalholographicmicroscopyover
classicalmicroscopytechniquesisthatitdoesnotonlyprovidetheprojectedimageof
theobjectbutalsoprovidesthreedimensionalinformationoftheobject'soptical
thickness.DHMtechnologycouldbethecoreofalabel-freeimagingfbrhematology
applications.Inanidealframework,abloodsamplecanbeimagedusingDHM,
machinelearningapproachescan(beusedfor)thecellextraction,differentiationand
consequentlycomputingalltherelevantbloodstatisticssuchastheMeanCorpuscular
Volume(MCV),theRedBloodCell(RBC)count,RedBloodCellDistributionWidth
(RDW)._Themostvitalcomponentinsuchaframeworkisaccurateextractionofthe
cells.(2)(2)Thispaperpresentsanovelapproachtocellsegmentationinwhicha
probabilisticboostingtreeclassifieristrainedtodetectthecentersofthecellsusing
Haar-Featu】es・Thedetectedcellcentersareusedtotriggeramarker-controlledpower
watershedsegmentationtocomputethecellboundaries.Additionally,wepresenta
comprehensiveevaluationofsegmentationmethodsfbrcellextractionindigital
holographicimages.
1.INTRODUCTION
DigitalHolographicMicroscopy(DHM)hasreceivedalotofattentionrecently
incellimaging[1,2,3].(3)DHM,ifassociatedwithproperimageprocessing
algorithms,canserveasthefundamentalbuildingblockinalabelfreecelldiagnostics
workflow.Insuchaworkflow,accuratecellextractionisavitalsteptoperformthe
analysis.Therefore,thoroughinvestigationofcellsegmentationinDHMimagesisa
persistentnecessity.CurrentDHMapplicationstudiessuchas[1,2]usesimple
segmentationtoolsorutilizegenericcellsegmentationtools[4](that)arenot
designedforDHMandtheaccuracyoftheirperformanceforDHMwasnotassessed
intheliterature.Onenotableexceptionisthecellsegmentationapproachpresentedby
Yietal.in[3].Thealgorithmin[3]usesasequenceofmorphologicaloperationson
thephaseimagetogeneratemarkersformaker-controlledwatershedsegmentation.
Theapproachisrelativelycomplicatedandthemaindisadvantageisitssensitivityto
theparametersofthemorphologicaloperatorssuchasthesizeofthestructure
elementusedineveryoperation.Wewillovercomethisproblem.Inthispaper,we
presentatwo-stepsegmentationapproach:Celldetectiontolocalizethecentersofthe
cellsandcellsegmentationtodelineatetheboundariesofthecells.Qualitativeand
quantitativeassessmentofoursegmentationmethodispresented.Moreover,we
introduceacomparisontothestate-of-theartcellsegmentationmethods[3]and[4].
⑷Therestofthepaperisorganizedasfollows:Section2presentsthedetailsof
ourproposedsegmentationmethods,section3introducestheexperimentalresultsand
thecomparisontoothersegmentationmethods,thenaconcludingdiscussionis
Fig.I.PipelineofCellExtractionAlgorithm.Left:originalimagesuperimposedbytheprobabilitymapofapixel
beingacellcenter.Middle:Resultofaggregationoftheprobabilitymapresponseandgeneratingtheinternal
markers.Left:Segmentationresults.
2.METHODS
Markercontrolledwatershedhasbeenusedrepeatedlyforcellsegmentation[4,3,
5,6].Robustmarkergenerationisnecessarytoobtainqualitysegmentationresults.
Mostoftheprevioussegmentationmethods[3,4]useasequenceofmorphological
operationstoidentifythebestpossiblesetofmarkers.Onekeyproblemwithsuch
approachesis(that)itrequiresthetuningofmanyparametersforthestepswithinthe
morphologicaloperationchain.@(5)Itislesslikelytohavedsinglesetof
parametersthatcouldworkefficientlyforalltheimages.Ontheotherhand,tuning
theparametersforeachsingleimageiscompletelyimpracticalandnegatesthehigh
throughputadvantageassociatedwithDHMtechnology.Motivatedbytheprevious
drawbacks,wepresentanewcellsegmentationapproach.Thenoveltyofour
approachistwo-fold:First,robustmarkergeneration(using)cellcenterdetection.0
⑹Second,weusepowerwatershedforthecellsegmentationwhichhasbeenproven
moreefficientthanconventionalwatershedingeneralsegmentationproblems[7].
Figure1showsthepipelineofourcellextractionapproach.
2.1.RobustMarkerGeneration
(7)Weconsiderthemarkergenerationproblemasanobjectdetectionproblem
whereweaimatfindingthepositionsofcellcenters.Forthispurpose,weusea
machinelearningbasedapproachinsteadofmorphologicaloperationstominimizethe
sensitivitytoparameters9choice.Inthiscontext,weuseProbabilisticBoostingTree
(PBT)learningframework[8].Inthelearningphase,thePBTconstructsatree(in
which)eachnodecombinesasetofweakclassifiersintoastrongclassifier.Intesting
phase,theconditionalprobabilityiscomputedateachnodeandtheprobabilityis
propagatedtothesourceofthetreetoprovidetheoverallprobability.Inourtraining,
weusetheHaarfeatures[9]toformtheweakclassifiers.®⑻Intesting,we
computetheprobabilityofeachpixelintheimagebeingacenterofacell,the
probabilitymapisthresholdedtokeeponlythepixelsthataremorelikelytobeacell
center.
2.2.AggregationoftheDetectionResponses
Aftercomputingtheprobabilitymapandapplyingthethreshold,wegetahigh
responseinsideeachcell.However,theresponseisnotnecessarilysmoothand
connectedwhichmayleadtofalseidentificationofonecellasmultiplecells.
Therefore,toaggregatetheseresponse,weapplyaclusteringsteponthethresholded
probabilitymap.Theclusteringservestwopurposes,first,itaggregatedthecell
responsesinasinglecell.Second,itprovidesalargersetofpixelstoformasthe
internalmarkerforthesegmentation.Thepixelsofeachclusteraremergedintoa
singleconnectedcomponentthatservesasaninternalmarkerforthecell
segmentationstep.Themiddle
imageinFigure1showsasampleofthemarkerscomputedafterclustering.Theseare
usedasinternalcellmarkers,externalcellmarkershighlightingthebackgroundare
obtainedbyapplyingwatershedtransformontheinternalmarkers.
2.3.CellSegmentationusingPowerWatershed
Thepowerwatershedsegmentationreviewedinthissectionwaspresentedby
Couprieetal.in[7].Theformulationisperformedonadiscretegraph.Agraph
g={V,E}consistsofasetofverticesvEVandasetofedgeseG£QVxV.An
edgeincidenttovertices片andvjisdenotedey.Inourformulation,eachpixelis
identifiedwithanode,片.Aweightedgraphisagraphinwhicheveryedgee,is
assignedaweight
w.⑼Theseededsegmentationenergyin-7]wasgivenas
ngnE啕叫一叼/+£共产?+£呜皿一1R
s.t.x(F)=1.x(B)=0.
s,=1ifX,>I,0ifXa<(1)
wherex^and与arethebinarylabelsassociatedwithvertices,andrespectively.F
andBrepresentthesetsofforegroundandbackgroundmarkers.(Itwasshownin[7]
that)whenpooandq>1,thisleadstoamoregeneralwatershed,namely,power
watershedthatyieldedbetterresults.Cellsegmentationcouldbenefitfbrthe
improvementsassociatedwithpowerwatershed.InSection3,wewillpresentthe
comparisonbetweenthesegmentationresultsusingpowerwatershed!andwatershed
thathasbeenusedinthevastliteraturefbrcellsegmentation.
DonorDonorDataDonorOverall
12Set34
TP97.4%97.8%97.3%96.5%97.2%
FP6.8%4.3%3.7%5.7%5%
Table1.Resultsofthedetectionofthecellcenter.TPandFParethetruepositiveandfalse
positiverates,respectively.
3.EXPERIMENTALRESULTS
Inadditiontothenovelsegmentationapproach,weconsidertheevaluationand
comparisonofsegmentationmethodsforDHMasamajorcontributionofthepaper.
Wechoseasubsetofsegmentationmethodsthatweconsiderrepresentativeofthe
currentsegmentationmethods.Qualitativeandquantitativecomparisonwillbe
presentedinthissection.
3.1.DataDescriptionandCellDetection
ThedatasetisacquiredusingtheQModHolographicandFluorescence
Microscope[10].Thecellswereilluminatedwithalightsourceofwavelength=
550nmandthemagnificationobjectiveis60x1.Thenumberofdonorsusedinthis
studyis4.Thenumberofimagesforeachdonor(variesfrom)6-9imageswithatotal
of28images.Eachimagecontainsmultiplecellsvaryingfrom10-30withatotalof
615cells,lbevaluatetheaccuracyofthedetectionalgorithm,weusen-foldleaveone
outcrossvalidation.Specifically,wedid4training/testingsets.Foreachsetweleave
outalltheimagesassociatedwithagivendonorandtraintheclassifierontheimages
oftherestofthedonors.Fortesting,wetestonlyontheunseendatafromtheleftout
donor.(10)Weexcludevllthecellsthataretouchingtheboundariesoftheimageto
ensurethattheevaluationisperformedonlyonvalidcellcandidates.
Theprobabilisticboostingtreeoutputsaprobabilitymapofeachpixel(being)a
cellcenter.Wethresholdtheprobabilitymapatp=0:75toconsideronlythepixels
thatarehighlikelytobecells.(11)Thethresholddoesnotprovideasinglecellcenter
butratheraclusterofpointsinthecenterofthecellasdepictedinthefirstimageof
Figure1.Inthisimage,theprobabilitymapissuperimposedontheoriginalimage
withthelostprobabilityinredandthehighestprobabilityinblue.Table1showsthe
(12)resultforthedetectionsystem.
3.2.CellSegmentation
Wechosearepresentativesubsetofcellsegmentationmethodstocompare
againstMl[4]andM2[3].Moreover,todecoupletheeffectofeachcontribution(the
machinelearningdetectioncomponentandthepowerwatershedsegmentation
component),wepresenttwonovelmethodsM3thatbenefitsfromdetection
componentonlyandM4thatbenefitsfromthepowerwatershedsegmentation
componentonly.ThedescriptionsofmethodsMl-M5aresummarizedasfollows:
l.CellProfiler[4](Ml):CellProfiler(isconsideredas)oneofthebenchmarksin
cellsegmentationandhasbeenrepeatedlyusedbyotherresearchgroupsto
obtainthesegmentationandprovideanalysis.
2.MarkerControlledWatershedforDHM(M2)[3]:Dedicatedcellsegmentation
forDHMtechnologywasonlydiscussedin[3].Themethodusesa
complicatedworkflowtogeneratethemarkersforthewatershedsegmentation.
Theworkflowissummarizedasfollows:(1)Imageisnormalized,(2)Otsu's
thresholdisappliedtoobtainIbin,(3)Holesarefilledusingmorphological
constructiontoIbin,(4)GradientimageIgradiscomputedusingSobel
operator.(5)MorphologicalopeningisappliedtoIbintoobtainlopen.(6)
Morphologicalerosion(13)isappliedtolopentoobtainlerode.(7)
Morphologicalreconstructionisappliedwithlopenasthemaskandlerodeas
amarkertoobtain\rec.(8)ComputeIsubasIopen-Irec.(9)Apply
morphologicaldilationonlerodetoobtainIdilate(10)Obtaintheinternal
markersbycombiningIsubandIdilate.(11)Applywatershedtransformonthe
internalmarkerstogeneratetheexternalmarkers.(12)Applymarkercontrolled
watershedsegmentationusingthemarkersgeneratedin(11).Mostofthe
previousstepsrequiretuningofstructureelementparameterswhichmakesthe
workflowerrorprone.Althoughtheworkflowwascarefullycraftedwith
specificparametersprovidedbytheauthorsin[3]toavoidmergingtouching
cellsoreliminatingsmallcomponents,asinglesetofparametersdoesnotwork
wellinallscenarios.Wetestedseveralcombinationsofparameterstotryto
achievethebestresultsforourdataset.Afterseveralexperiments,wefigured
thattheparametersprovidedbytheauthorsin[3]workbest.(14)Hence,for
thecomparison,weusetheparameterselectionin⑶.Onecanarguethatthe
improvementover[3]isduetoperformingthesegmentationusingpower
watershedratherthanthegenerationoftheaccuratemarkers.So,(15)itis
worthclarifyingthattheimprovementisduetoacombinationofbothfactors.
Todecoupletheeffectofeachcomponent.Wealsocompareagainsttwoother
workflows(M3andM4).
3.MachineLearningMarkerGenerationwithWatershed(M3):Inthismethod,
weusethemarkersgeneratedbythemachinelearningbasedcellcenter
detectionto
triggerwatershedsegmentation.
4.MorphologicalMarkerGenerationwithPowerWatershed(M4):Inthismethod,
wegeneratethemarkersusingthemorphologicalworkflow(M2)andapply
powerwatershedforthesegmentationinsteadofwatershed.
5.MachineLearningMarkerGenerationwithPowerwatershed(M5):Thisisthe
proposedworkflowwhichtakesadvantageofrobustmarkergenerationaswell
asmoreaccuratesegmentationusingpowerwatershed.
Figure2showsasampleofourresults.Thegallerydepictstheresultsofthefive
algorithmsforthreedifferentimagesfromdifferentdonors.Thethirdcolumnshows
thatallthealgorithmsworkcomparablywellifthecellsaresparselydistributedinthe
image.This,however,isnotverypracticalasitdoesnotefficientlyutilizethefull
fieldofview.Inpractice,thecellsmaybeveryclosetoeachother.Insuchscenarios,
mostofthemorphologicalbasedapproacheswouldfailinaccuratelyextractingthe
cells.Intheyellowboxes,weshowanexamplewheretwocellsaretouching.The
algorithmin[4]mergesthetwocellsinoneentity.Thecarefullycrafted
morphologicalworkflowin[3]managedtoseparatethetwocellsasshowninthe
secondrowand(16)sodidallthealgorithmswedevelopedasshowninthethird,
fourthandfifthrows.Whenthecellsslightlyoverlaps,itbecomesmorechallenging
andmorphologicalbasedmethodsfailtoaccuratelyextractthecellsasshowninthe
examplesinthegreenboxes.Ontheotherhand,M4andM5cansuccessfullyextract
thecellsduetotherobustnessofthecellcenterdetectioncomponent.Itisworth
notingthathighthroughputsystemsrequireafullutilizationofthefieldofview
whichresultsinmultipleoccurrencesofsuchtouchingorslightlyoverlappingcells.A
limitationofthecurrentapproachisthatwhentheoverlapbetweenthecellsislarge,
theboundariescannotbedelineatedaccuratelyasdepictedintheblueboxes.However,
eveninsuchscenario,ouralgorithmismoreaccuratethan[4]and[3]becauseitstill
identifiedtwocellswhichisimportantforan
accuratecellcount.
至
,€s£
K
c
-5*>方
u6
d胃
_M
M至
-
主
♦
|国
SS
CJ
M
Oq
co
ld
—
1
0
生
一
里
6i国
U9s
36b
-*
I0M
岂¥
o
d
.
Fig.2.Sampleofthesegmentationresultsobtainedusingthefivedifferentalgorithms.
Forquantitativeassessment,wechosethemostcommonmetricsfor
segmentationevaluation,namely,thesensitivity,specificity,DiceandJaccard
similarityindexdefinedas:
TP
Sensitivity
TP+F.V•
TN
Specificity⑵
TN+FP'
TTP
DiceSimilarityIndex
JaccardSimilarityIndex
TP+FP+N
whereTP,FP,TNandFNrefertothetruepositives,falsepositives,truenegativesand
falsenegatives,respectively.
Table2showstheresultsforthemethodsM1-M5.Thequantitativeassessment
showsthateachcomponentweintroduced(contributedto)improvingthe
segmentationresults.However,(17)itisevidentthattherobustlocalizationofthecells
usingthecelldetectionframeworkplayedamorecrucialrole.Whilethesensitivity
improvedby10%whenusingourmachinelearningmarkergeneration,itonly
improved2%whenusingpowerwatershedinsteadofwatershed.
M1M2M3M4M5
Sensitivity88.7083.3792.9484.5894.83
Specificity98.1898.5797.4498.9298.44
Jaccard80.9577.5581.5380.0686.51
Dice89.3288.8489.7488.8492.66
Table2.QuantitativeComparisonbetweenthedifferentSegmentationMethods.
4.CONCLUSIONANDFUTUREWORK
Thepaperpresentedanovelapproachforcellsegmentationindigital
holographicmicroscopicimages.Therobustmarkergenerationpresentedinthepaper
outperformsthemorphologicalworkflowformarkergenerationthatiscommonly
usedtoinitiatewatershedsegmentation.Weintroducedthepowerwatershedtothe
cellsegmentationproblemandpresentedquantitativeevidencethatitworksbetter
thanwatershed.Thepaperpresentedaquantitativecomparisonoftheproposed
approachtothecommonmethodsusedforcellsegmentation.Onelimitationofour
approachandallthemethods(M1-M5)isthatitisnotcapableofproperlysegmenting
overlappingcells.Inthefuture,weplantoaddpostprocessingthatidentifiesthe
overlappingcellsandformulatesalayeredsegmentationalgorithmtoseparate
properlytheoverlappingcells.
一、语法分析
(1)Themainadvantageofdigitalholographicmicroscopyoverclassicalmicroscopy
techniquesisthatitdoesnotonlyprovidetheprojectedimageoftheobjectbut
alsoprovidesthreedimensionalinformationoftheobject'sopticalthickness.
本句主语为Themainadvantage,ofdigitalholographicmicroscopy作为后置定
语修饰主语,advantage...over为固定搭配表示与…相比的优势含义,表语由
that引导的表语从句充当,其中notonly…butalso…表示不仅而且的意思,并
且of+n具有形容词的含义。
(2)Thispaperpresentsanovelapproachtocellsegmentationinwhichaprobabilistic
boostingtreeclassifieristrainedtodetectthecentersofthecellsusing
Haar-Features.
本句主句为Thispaperpresentsanapproach.present:提出,approachto…:固定
搭配,…的方法,inwhich引导定语从句修饰approach,这时可与where互换,
classifieristrainedtodetect…不定式表目的,thecentersofthecellsusing
Haar-Features.using前省略的介词by,表方式。
(3)DHM,ifassociatedwithproperimageprocessingalgorithms,canserveasthe
fundamentalbuildingblockinalabelfreecelldiagnosticsworkflow.
ifassociatedwithproperimageprocessingalgorithms在句中作条件状语,可将
其放在句首:Ifassociatedwithproperimageprocessingalgorithms,DHMcan
serveasthefundamentalbuildingblockinalabelfreecelldiagnosticsworkflow.
连词+分词做状语,省略了主语(If也可省略),主语是主句主语,serveas为
固定短语表示充当…,inalabelfreecelldiagnosticsworkflow介词短语做状语。
(4)Therestofthepaperisorganizedasfollows:Section2presentsthedetailsofour
proposedsegmentationmethods,section3introducestheexperimentalresultsand
thecomparisontoothersegmentationmethods,thenaconcludingdiscussionis
providedinsection4.
该段主要是对文章结构进行简要说明,thepaperisorganizedasfollows采用了
organize的被动态以及短语asfollows,为避免重复,对每一部分的介绍使用了
不同动词,分另II是present,introduce,provide;thecomparisontoother
segmentationmethods.comparisonto为compareto…的变形;引入最后一部分
使用了连词then而不是finally.
(5)Itislesslikelytohaveasinglesetofparametersthatcouldworkefficientlyforall
theimages.
Itislikelytodo…表示做什么事很有可能,less含义与more相反,Itislesslikely
todo…表示做…不太可能,it为形式主语,真正主语为不定式。asetof:一套,
一副,that引导一个定语从句修饰parameters,work表示起作用,工作的意
思。
(6)Second,weusepowerwatershedforthecellsegmentationwhichhasbeenproven
moreefficientthanconventionalwatershedingeneralsegmentationproblems[7].
Second:其次;weusepowerwatershedforthecellsegmentation,use…for…:将...
用在…上;which引导定语从句修饰powerwatershed,句中使用现在完成时
的被动态hasbeenproven表示此事现在已经被证明了;moreefficientthan…比
较级的运用,表示比…更有效。
(7)Weconsiderthemarkergenerationproblemasanobjectdetectionproblemwhere
weaimatfindingthepositionsofcellcenters.
consider…as…:将…视为…;where引导定语从句可将其替换成inwhich(如
(2));aimat*-:旨在…;of+n.做后置定语。
(8)Intesting,wecomputetheprobabilityofeachpixelintheimagebeingacenterof
acell,theprobabilitymapisthresholdedtokeeponlythepixelsthataremore
likelytobeacellcenter.
Intesting:在测试中,做状语;ofeachpixel…做后置定语修饰probability,each
pixelbeingacenterofacell是分词的独立结构,分词带有自己的主语;the
pixelsthataremorelikelytobeacellcenter
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浅滩海域施工方案
- 办公室装修终止合同声明
- 汽车制造液氮配送合同
- 亲子游泳馆装修合同管理费
- 仓储物流中心改造拆除协议
- 北城小学1年级数学试卷
- 银行柜台施工方案
- 安师大附中初三数学试卷
- 铝挂片吊顶施工方案
- 司机不定时工作制合同范例
- 二零二五年知识产权共享及收益分成合作协议3篇
- 北师大版二年级数学上册计算题专项复习大全272
- 南通市2025届高三第一次调研测试(一模)生物试卷(含答案 )
- 2024年09月2024渤海银行天津滨海新区分行校园招聘笔试历年参考题库附带答案详解
- 期末考试成绩分析报告课件
- 儿童哮喘的防治与治疗
- 人教版PEP版小学英语三年级下册Unit 4 Healthy food Part A课件
- 学校安全教师培训
- 2024年陕西省中考道德与法治真题(A卷)(原卷版)
- (2024)湖北省公务员考试《行测》真题及答案解析
- 金融警示教育案例
评论
0/150
提交评论