科技英语阅读与写作_第1页
科技英语阅读与写作_第2页
科技英语阅读与写作_第3页
科技英语阅读与写作_第4页
科技英语阅读与写作_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

龙终建了科技之冬

科技英语阅读与写作

题目:CellSegmentationinDigitalHolographic

Images

学院:____________电子工程学院_________

专业:信号与信息处理

姓名:_________________________________

学号:_____________1602120898___________

Partner:

姓名:_______________张润东_____________

学号:1601120188

CELLSEGMENTATIONINDIGITALHOLOGRAPHICIMAGES

NohaEl-Zehiry'OliverHayden2andAliKamen1

,MedicalImagingTechnologies,SiemensHealthcare,Princeton,NJ,USA

2In-VitroDXandBioscience,SiemensHealthcare,Erlangen,Germany

ABSTRACT

DigitalHolographicMicroscopy(DHM)isbecomingrecentlyverypopularfor

cellimaging.①(1)Themainadvantageofdigitalholographicmicroscopyover

classicalmicroscopytechniquesisthatitdoesnotonlyprovidetheprojectedimageof

theobjectbutalsoprovidesthreedimensionalinformationoftheobject'soptical

thickness.DHMtechnologycouldbethecoreofalabel-freeimagingfbrhematology

applications.Inanidealframework,abloodsamplecanbeimagedusingDHM,

machinelearningapproachescan(beusedfor)thecellextraction,differentiationand

consequentlycomputingalltherelevantbloodstatisticssuchastheMeanCorpuscular

Volume(MCV),theRedBloodCell(RBC)count,RedBloodCellDistributionWidth

(RDW)._Themostvitalcomponentinsuchaframeworkisaccurateextractionofthe

cells.(2)(2)Thispaperpresentsanovelapproachtocellsegmentationinwhicha

probabilisticboostingtreeclassifieristrainedtodetectthecentersofthecellsusing

Haar-Featu】es・Thedetectedcellcentersareusedtotriggeramarker-controlledpower

watershedsegmentationtocomputethecellboundaries.Additionally,wepresenta

comprehensiveevaluationofsegmentationmethodsfbrcellextractionindigital

holographicimages.

1.INTRODUCTION

DigitalHolographicMicroscopy(DHM)hasreceivedalotofattentionrecently

incellimaging[1,2,3].(3)DHM,ifassociatedwithproperimageprocessing

algorithms,canserveasthefundamentalbuildingblockinalabelfreecelldiagnostics

workflow.Insuchaworkflow,accuratecellextractionisavitalsteptoperformthe

analysis.Therefore,thoroughinvestigationofcellsegmentationinDHMimagesisa

persistentnecessity.CurrentDHMapplicationstudiessuchas[1,2]usesimple

segmentationtoolsorutilizegenericcellsegmentationtools[4](that)arenot

designedforDHMandtheaccuracyoftheirperformanceforDHMwasnotassessed

intheliterature.Onenotableexceptionisthecellsegmentationapproachpresentedby

Yietal.in[3].Thealgorithmin[3]usesasequenceofmorphologicaloperationson

thephaseimagetogeneratemarkersformaker-controlledwatershedsegmentation.

Theapproachisrelativelycomplicatedandthemaindisadvantageisitssensitivityto

theparametersofthemorphologicaloperatorssuchasthesizeofthestructure

elementusedineveryoperation.Wewillovercomethisproblem.Inthispaper,we

presentatwo-stepsegmentationapproach:Celldetectiontolocalizethecentersofthe

cellsandcellsegmentationtodelineatetheboundariesofthecells.Qualitativeand

quantitativeassessmentofoursegmentationmethodispresented.Moreover,we

introduceacomparisontothestate-of-theartcellsegmentationmethods[3]and[4].

⑷Therestofthepaperisorganizedasfollows:Section2presentsthedetailsof

ourproposedsegmentationmethods,section3introducestheexperimentalresultsand

thecomparisontoothersegmentationmethods,thenaconcludingdiscussionis

Fig.I.PipelineofCellExtractionAlgorithm.Left:originalimagesuperimposedbytheprobabilitymapofapixel

beingacellcenter.Middle:Resultofaggregationoftheprobabilitymapresponseandgeneratingtheinternal

markers.Left:Segmentationresults.

2.METHODS

Markercontrolledwatershedhasbeenusedrepeatedlyforcellsegmentation[4,3,

5,6].Robustmarkergenerationisnecessarytoobtainqualitysegmentationresults.

Mostoftheprevioussegmentationmethods[3,4]useasequenceofmorphological

operationstoidentifythebestpossiblesetofmarkers.Onekeyproblemwithsuch

approachesis(that)itrequiresthetuningofmanyparametersforthestepswithinthe

morphologicaloperationchain.@(5)Itislesslikelytohavedsinglesetof

parametersthatcouldworkefficientlyforalltheimages.Ontheotherhand,tuning

theparametersforeachsingleimageiscompletelyimpracticalandnegatesthehigh

throughputadvantageassociatedwithDHMtechnology.Motivatedbytheprevious

drawbacks,wepresentanewcellsegmentationapproach.Thenoveltyofour

approachistwo-fold:First,robustmarkergeneration(using)cellcenterdetection.0

⑹Second,weusepowerwatershedforthecellsegmentationwhichhasbeenproven

moreefficientthanconventionalwatershedingeneralsegmentationproblems[7].

Figure1showsthepipelineofourcellextractionapproach.

2.1.RobustMarkerGeneration

(7)Weconsiderthemarkergenerationproblemasanobjectdetectionproblem

whereweaimatfindingthepositionsofcellcenters.Forthispurpose,weusea

machinelearningbasedapproachinsteadofmorphologicaloperationstominimizethe

sensitivitytoparameters9choice.Inthiscontext,weuseProbabilisticBoostingTree

(PBT)learningframework[8].Inthelearningphase,thePBTconstructsatree(in

which)eachnodecombinesasetofweakclassifiersintoastrongclassifier.Intesting

phase,theconditionalprobabilityiscomputedateachnodeandtheprobabilityis

propagatedtothesourceofthetreetoprovidetheoverallprobability.Inourtraining,

weusetheHaarfeatures[9]toformtheweakclassifiers.®⑻Intesting,we

computetheprobabilityofeachpixelintheimagebeingacenterofacell,the

probabilitymapisthresholdedtokeeponlythepixelsthataremorelikelytobeacell

center.

2.2.AggregationoftheDetectionResponses

Aftercomputingtheprobabilitymapandapplyingthethreshold,wegetahigh

responseinsideeachcell.However,theresponseisnotnecessarilysmoothand

connectedwhichmayleadtofalseidentificationofonecellasmultiplecells.

Therefore,toaggregatetheseresponse,weapplyaclusteringsteponthethresholded

probabilitymap.Theclusteringservestwopurposes,first,itaggregatedthecell

responsesinasinglecell.Second,itprovidesalargersetofpixelstoformasthe

internalmarkerforthesegmentation.Thepixelsofeachclusteraremergedintoa

singleconnectedcomponentthatservesasaninternalmarkerforthecell

segmentationstep.Themiddle

imageinFigure1showsasampleofthemarkerscomputedafterclustering.Theseare

usedasinternalcellmarkers,externalcellmarkershighlightingthebackgroundare

obtainedbyapplyingwatershedtransformontheinternalmarkers.

2.3.CellSegmentationusingPowerWatershed

Thepowerwatershedsegmentationreviewedinthissectionwaspresentedby

Couprieetal.in[7].Theformulationisperformedonadiscretegraph.Agraph

g={V,E}consistsofasetofverticesvEVandasetofedgeseG£QVxV.An

edgeincidenttovertices片andvjisdenotedey.Inourformulation,eachpixelis

identifiedwithanode,片.Aweightedgraphisagraphinwhicheveryedgee,is

assignedaweight

w.⑼Theseededsegmentationenergyin-7]wasgivenas

ngnE啕叫一叼/+£共产?+£呜皿一1R

s.t.x(F)=1.x(B)=0.

s,=1ifX,>I,0ifXa<(1)

wherex^and与arethebinarylabelsassociatedwithvertices,andrespectively.F

andBrepresentthesetsofforegroundandbackgroundmarkers.(Itwasshownin[7]

that)whenpooandq>1,thisleadstoamoregeneralwatershed,namely,power

watershedthatyieldedbetterresults.Cellsegmentationcouldbenefitfbrthe

improvementsassociatedwithpowerwatershed.InSection3,wewillpresentthe

comparisonbetweenthesegmentationresultsusingpowerwatershed!andwatershed

thathasbeenusedinthevastliteraturefbrcellsegmentation.

DonorDonorDataDonorOverall

12Set34

TP97.4%97.8%97.3%96.5%97.2%

FP6.8%4.3%3.7%5.7%5%

Table1.Resultsofthedetectionofthecellcenter.TPandFParethetruepositiveandfalse

positiverates,respectively.

3.EXPERIMENTALRESULTS

Inadditiontothenovelsegmentationapproach,weconsidertheevaluationand

comparisonofsegmentationmethodsforDHMasamajorcontributionofthepaper.

Wechoseasubsetofsegmentationmethodsthatweconsiderrepresentativeofthe

currentsegmentationmethods.Qualitativeandquantitativecomparisonwillbe

presentedinthissection.

3.1.DataDescriptionandCellDetection

ThedatasetisacquiredusingtheQModHolographicandFluorescence

Microscope[10].Thecellswereilluminatedwithalightsourceofwavelength=

550nmandthemagnificationobjectiveis60x1.Thenumberofdonorsusedinthis

studyis4.Thenumberofimagesforeachdonor(variesfrom)6-9imageswithatotal

of28images.Eachimagecontainsmultiplecellsvaryingfrom10-30withatotalof

615cells,lbevaluatetheaccuracyofthedetectionalgorithm,weusen-foldleaveone

outcrossvalidation.Specifically,wedid4training/testingsets.Foreachsetweleave

outalltheimagesassociatedwithagivendonorandtraintheclassifierontheimages

oftherestofthedonors.Fortesting,wetestonlyontheunseendatafromtheleftout

donor.(10)Weexcludevllthecellsthataretouchingtheboundariesoftheimageto

ensurethattheevaluationisperformedonlyonvalidcellcandidates.

Theprobabilisticboostingtreeoutputsaprobabilitymapofeachpixel(being)a

cellcenter.Wethresholdtheprobabilitymapatp=0:75toconsideronlythepixels

thatarehighlikelytobecells.(11)Thethresholddoesnotprovideasinglecellcenter

butratheraclusterofpointsinthecenterofthecellasdepictedinthefirstimageof

Figure1.Inthisimage,theprobabilitymapissuperimposedontheoriginalimage

withthelostprobabilityinredandthehighestprobabilityinblue.Table1showsthe

(12)resultforthedetectionsystem.

3.2.CellSegmentation

Wechosearepresentativesubsetofcellsegmentationmethodstocompare

againstMl[4]andM2[3].Moreover,todecoupletheeffectofeachcontribution(the

machinelearningdetectioncomponentandthepowerwatershedsegmentation

component),wepresenttwonovelmethodsM3thatbenefitsfromdetection

componentonlyandM4thatbenefitsfromthepowerwatershedsegmentation

componentonly.ThedescriptionsofmethodsMl-M5aresummarizedasfollows:

l.CellProfiler[4](Ml):CellProfiler(isconsideredas)oneofthebenchmarksin

cellsegmentationandhasbeenrepeatedlyusedbyotherresearchgroupsto

obtainthesegmentationandprovideanalysis.

2.MarkerControlledWatershedforDHM(M2)[3]:Dedicatedcellsegmentation

forDHMtechnologywasonlydiscussedin[3].Themethodusesa

complicatedworkflowtogeneratethemarkersforthewatershedsegmentation.

Theworkflowissummarizedasfollows:(1)Imageisnormalized,(2)Otsu's

thresholdisappliedtoobtainIbin,(3)Holesarefilledusingmorphological

constructiontoIbin,(4)GradientimageIgradiscomputedusingSobel

operator.(5)MorphologicalopeningisappliedtoIbintoobtainlopen.(6)

Morphologicalerosion(13)isappliedtolopentoobtainlerode.(7)

Morphologicalreconstructionisappliedwithlopenasthemaskandlerodeas

amarkertoobtain\rec.(8)ComputeIsubasIopen-Irec.(9)Apply

morphologicaldilationonlerodetoobtainIdilate(10)Obtaintheinternal

markersbycombiningIsubandIdilate.(11)Applywatershedtransformonthe

internalmarkerstogeneratetheexternalmarkers.(12)Applymarkercontrolled

watershedsegmentationusingthemarkersgeneratedin(11).Mostofthe

previousstepsrequiretuningofstructureelementparameterswhichmakesthe

workflowerrorprone.Althoughtheworkflowwascarefullycraftedwith

specificparametersprovidedbytheauthorsin[3]toavoidmergingtouching

cellsoreliminatingsmallcomponents,asinglesetofparametersdoesnotwork

wellinallscenarios.Wetestedseveralcombinationsofparameterstotryto

achievethebestresultsforourdataset.Afterseveralexperiments,wefigured

thattheparametersprovidedbytheauthorsin[3]workbest.(14)Hence,for

thecomparison,weusetheparameterselectionin⑶.Onecanarguethatthe

improvementover[3]isduetoperformingthesegmentationusingpower

watershedratherthanthegenerationoftheaccuratemarkers.So,(15)itis

worthclarifyingthattheimprovementisduetoacombinationofbothfactors.

Todecoupletheeffectofeachcomponent.Wealsocompareagainsttwoother

workflows(M3andM4).

3.MachineLearningMarkerGenerationwithWatershed(M3):Inthismethod,

weusethemarkersgeneratedbythemachinelearningbasedcellcenter

detectionto

triggerwatershedsegmentation.

4.MorphologicalMarkerGenerationwithPowerWatershed(M4):Inthismethod,

wegeneratethemarkersusingthemorphologicalworkflow(M2)andapply

powerwatershedforthesegmentationinsteadofwatershed.

5.MachineLearningMarkerGenerationwithPowerwatershed(M5):Thisisthe

proposedworkflowwhichtakesadvantageofrobustmarkergenerationaswell

asmoreaccuratesegmentationusingpowerwatershed.

Figure2showsasampleofourresults.Thegallerydepictstheresultsofthefive

algorithmsforthreedifferentimagesfromdifferentdonors.Thethirdcolumnshows

thatallthealgorithmsworkcomparablywellifthecellsaresparselydistributedinthe

image.This,however,isnotverypracticalasitdoesnotefficientlyutilizethefull

fieldofview.Inpractice,thecellsmaybeveryclosetoeachother.Insuchscenarios,

mostofthemorphologicalbasedapproacheswouldfailinaccuratelyextractingthe

cells.Intheyellowboxes,weshowanexamplewheretwocellsaretouching.The

algorithmin[4]mergesthetwocellsinoneentity.Thecarefullycrafted

morphologicalworkflowin[3]managedtoseparatethetwocellsasshowninthe

secondrowand(16)sodidallthealgorithmswedevelopedasshowninthethird,

fourthandfifthrows.Whenthecellsslightlyoverlaps,itbecomesmorechallenging

andmorphologicalbasedmethodsfailtoaccuratelyextractthecellsasshowninthe

examplesinthegreenboxes.Ontheotherhand,M4andM5cansuccessfullyextract

thecellsduetotherobustnessofthecellcenterdetectioncomponent.Itisworth

notingthathighthroughputsystemsrequireafullutilizationofthefieldofview

whichresultsinmultipleoccurrencesofsuchtouchingorslightlyoverlappingcells.A

limitationofthecurrentapproachisthatwhentheoverlapbetweenthecellsislarge,

theboundariescannotbedelineatedaccuratelyasdepictedintheblueboxes.However,

eveninsuchscenario,ouralgorithmismoreaccuratethan[4]and[3]becauseitstill

identifiedtwocellswhichisimportantforan

accuratecellcount.

,€s£

K

c

-5*>方

u6

d胃

_M

M至

-

|国

SS

CJ

M

Oq

co

ld

1

0

6i国

U9s

36b

-*

I0M

岂¥

o

d

.

Fig.2.Sampleofthesegmentationresultsobtainedusingthefivedifferentalgorithms.

Forquantitativeassessment,wechosethemostcommonmetricsfor

segmentationevaluation,namely,thesensitivity,specificity,DiceandJaccard

similarityindexdefinedas:

TP

Sensitivity

TP+F.V•

TN

Specificity⑵

TN+FP'

TTP

DiceSimilarityIndex

JaccardSimilarityIndex

TP+FP+N

whereTP,FP,TNandFNrefertothetruepositives,falsepositives,truenegativesand

falsenegatives,respectively.

Table2showstheresultsforthemethodsM1-M5.Thequantitativeassessment

showsthateachcomponentweintroduced(contributedto)improvingthe

segmentationresults.However,(17)itisevidentthattherobustlocalizationofthecells

usingthecelldetectionframeworkplayedamorecrucialrole.Whilethesensitivity

improvedby10%whenusingourmachinelearningmarkergeneration,itonly

improved2%whenusingpowerwatershedinsteadofwatershed.

M1M2M3M4M5

Sensitivity88.7083.3792.9484.5894.83

Specificity98.1898.5797.4498.9298.44

Jaccard80.9577.5581.5380.0686.51

Dice89.3288.8489.7488.8492.66

Table2.QuantitativeComparisonbetweenthedifferentSegmentationMethods.

4.CONCLUSIONANDFUTUREWORK

Thepaperpresentedanovelapproachforcellsegmentationindigital

holographicmicroscopicimages.Therobustmarkergenerationpresentedinthepaper

outperformsthemorphologicalworkflowformarkergenerationthatiscommonly

usedtoinitiatewatershedsegmentation.Weintroducedthepowerwatershedtothe

cellsegmentationproblemandpresentedquantitativeevidencethatitworksbetter

thanwatershed.Thepaperpresentedaquantitativecomparisonoftheproposed

approachtothecommonmethodsusedforcellsegmentation.Onelimitationofour

approachandallthemethods(M1-M5)isthatitisnotcapableofproperlysegmenting

overlappingcells.Inthefuture,weplantoaddpostprocessingthatidentifiesthe

overlappingcellsandformulatesalayeredsegmentationalgorithmtoseparate

properlytheoverlappingcells.

一、语法分析

(1)Themainadvantageofdigitalholographicmicroscopyoverclassicalmicroscopy

techniquesisthatitdoesnotonlyprovidetheprojectedimageoftheobjectbut

alsoprovidesthreedimensionalinformationoftheobject'sopticalthickness.

本句主语为Themainadvantage,ofdigitalholographicmicroscopy作为后置定

语修饰主语,advantage...over为固定搭配表示与…相比的优势含义,表语由

that引导的表语从句充当,其中notonly…butalso…表示不仅而且的意思,并

且of+n具有形容词的含义。

(2)Thispaperpresentsanovelapproachtocellsegmentationinwhichaprobabilistic

boostingtreeclassifieristrainedtodetectthecentersofthecellsusing

Haar-Features.

本句主句为Thispaperpresentsanapproach.present:提出,approachto…:固定

搭配,…的方法,inwhich引导定语从句修饰approach,这时可与where互换,

classifieristrainedtodetect…不定式表目的,thecentersofthecellsusing

Haar-Features.using前省略的介词by,表方式。

(3)DHM,ifassociatedwithproperimageprocessingalgorithms,canserveasthe

fundamentalbuildingblockinalabelfreecelldiagnosticsworkflow.

ifassociatedwithproperimageprocessingalgorithms在句中作条件状语,可将

其放在句首:Ifassociatedwithproperimageprocessingalgorithms,DHMcan

serveasthefundamentalbuildingblockinalabelfreecelldiagnosticsworkflow.

连词+分词做状语,省略了主语(If也可省略),主语是主句主语,serveas为

固定短语表示充当…,inalabelfreecelldiagnosticsworkflow介词短语做状语。

(4)Therestofthepaperisorganizedasfollows:Section2presentsthedetailsofour

proposedsegmentationmethods,section3introducestheexperimentalresultsand

thecomparisontoothersegmentationmethods,thenaconcludingdiscussionis

providedinsection4.

该段主要是对文章结构进行简要说明,thepaperisorganizedasfollows采用了

organize的被动态以及短语asfollows,为避免重复,对每一部分的介绍使用了

不同动词,分另II是present,introduce,provide;thecomparisontoother

segmentationmethods.comparisonto为compareto…的变形;引入最后一部分

使用了连词then而不是finally.

(5)Itislesslikelytohaveasinglesetofparametersthatcouldworkefficientlyforall

theimages.

Itislikelytodo…表示做什么事很有可能,less含义与more相反,Itislesslikely

todo…表示做…不太可能,it为形式主语,真正主语为不定式。asetof:一套,

一副,that引导一个定语从句修饰parameters,work表示起作用,工作的意

思。

(6)Second,weusepowerwatershedforthecellsegmentationwhichhasbeenproven

moreefficientthanconventionalwatershedingeneralsegmentationproblems[7].

Second:其次;weusepowerwatershedforthecellsegmentation,use…for…:将...

用在…上;which引导定语从句修饰powerwatershed,句中使用现在完成时

的被动态hasbeenproven表示此事现在已经被证明了;moreefficientthan…比

较级的运用,表示比…更有效。

(7)Weconsiderthemarkergenerationproblemasanobjectdetectionproblemwhere

weaimatfindingthepositionsofcellcenters.

consider…as…:将…视为…;where引导定语从句可将其替换成inwhich(如

(2));aimat*-:旨在…;of+n.做后置定语。

(8)Intesting,wecomputetheprobabilityofeachpixelintheimagebeingacenterof

acell,theprobabilitymapisthresholdedtokeeponlythepixelsthataremore

likelytobeacellcenter.

Intesting:在测试中,做状语;ofeachpixel…做后置定语修饰probability,each

pixelbeingacenterofacell是分词的独立结构,分词带有自己的主语;the

pixelsthataremorelikelytobeacellcenter

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论