2023-2024学年湖北省襄阳市市级名校中考考前最后一卷数学试卷含解析_第1页
2023-2024学年湖北省襄阳市市级名校中考考前最后一卷数学试卷含解析_第2页
2023-2024学年湖北省襄阳市市级名校中考考前最后一卷数学试卷含解析_第3页
2023-2024学年湖北省襄阳市市级名校中考考前最后一卷数学试卷含解析_第4页
2023-2024学年湖北省襄阳市市级名校中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省襄阳市市级名校中考考前最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A. B.C. D.2.sin60°的值为()A. B. C. D.3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140° B.160° C.170° D.150°4.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车辆,根据题意,可列出的方程是().A. B.C. D.5.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A. B. C. D.6.下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a67.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC8.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.39.实数在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0 B.a-b<0 C.<0 D.>10.化简的结果是()A.±4 B.4 C.2 D.±2二、填空题(共7小题,每小题3分,满分21分)11.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.12.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.13.已知a,b为两个连续的整数,且a<<b,则ba=_____.14.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是cm(结果保留根号).15.分解因式:2x2﹣8xy+8y2=.16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.17.如图,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx(k为常数,k≠0)的图像上,正方形ADEF的面积为4,且BF=2AF,则三、解答题(共7小题,满分69分)18.(10分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.19.(5分)如图,在Rt△ABC中,,点在边上,⊥,点为垂足,,∠DAB=450,tanB=.(1)求的长;(2)求的余弦值.20.(8分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.21.(10分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?22.(10分)如图,△ABC中,∠C=90°,∠A=30°.用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);连接BD,求证:BD平分∠CBA.23.(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.24.(14分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP=,AQ=.⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是,故选C.【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.2、B【解析】解:sin60°=.故选B.3、B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算4、B【解析】

根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.5、D【解析】

由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.6、D【解析】

根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】∵3a﹣2a=a,∴选项A不正确;∵a2+a5≠a7,∴选项B不正确;∵(ab)3=a3b3,∴选项C不正确;∵a2•a4=a6,∴选项D正确.故选D.【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.7、C【解析】

在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8、B【解析】

解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.9、C【解析】

根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.10、B【解析】

根据算术平方根的意义求解即可.【详解】4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】

连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.【详解】解:如图,连接PB、PC,由二次函数的性质,OB=PB,PC=AC,∵△ODA是等边三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等边三角形,∵A(4,0),∴OA=4,∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×=2,即两个二次函数的最大值之和等于2.故答案为2.【点睛】本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.12、﹣2【解析】

连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=2,从而得到CE的最小值为2﹣2.【详解】连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的O上,∵O的半径为2,∴当点O、E.C共线时,CE最小,如图2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC−OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为:2﹣2.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.13、1【解析】

根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.【详解】解:∵a,b为两个连续的整数,且a<<b,∴a=2,b=3,∴ba=32=1.故答案为1.【点睛】此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,14、24+24【解析】

仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.【详解】解:观察图形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.故答案为24+24.【点睛】此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.15、1(x﹣1y)1【解析】试题分析:1x1﹣8xy+8y1=1(x1﹣4xy+4y1)=1(x﹣1y)1.故答案为:1(x﹣1y)1.考点:提公因式法与公式法的综合运用16、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m17、-1【解析】试题分析:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B点坐标为(t,1),则E点坐标(t-2,2),∵点B、E在反比例函数y=的图象上,∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k的几何意义.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)△APQ是等边三角形.【解析】

(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.【详解】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.19、(1)3;(2)【解析】分析:(1)由题意得到三角形ADE为等腰直角三角形,在直角三角形DEB中,利用锐角三角函数定义求出DE与BE之比,设出DE与BE,由AB=7求出各自的值,确定出DE即可;(2)在直角三角形中,利用勾股定理求出AD与BD的长,根据tanB的值求出cosB的值,确定出BC的长,由BC﹣BD求出CD的长,利用锐角三角函数定义求出所求即可.详解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,设DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;(2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值为.点睛:本题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,等腰直角三角形的判定与性质,熟练掌握各自的性质是解答本题的关键.20、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD²=2QG²=2QB²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.详解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q的坐标为(1,)或(1,).点睛:此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.21、(1);(2);(3)x=1.【解析】

(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)==;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=1.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.22、(1)作图见解析;(2)证明见解析.【解析】

(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;

(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.【详解】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【点睛】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.23、(1)见解析;(1)30°或150°,的长最大值为,此时.【解析】

(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论