数列专题训练包括通项公式求法和前n项和求法-的方法和习题-_第1页
数列专题训练包括通项公式求法和前n项和求法-的方法和习题-_第2页
数列专题训练包括通项公式求法和前n项和求法-的方法和习题-_第3页
数列专题训练包括通项公式求法和前n项和求法-的方法和习题-_第4页
数列专题训练包括通项公式求法和前n项和求法-的方法和习题-_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数列专题1、数列的通项公式与前n项的和的关系(数列的前n项的和为).2、等差数列的通项公式;3、等差数列其前n项和公式为.4、等比数列的通项公式;5、等比数列前n项的和公式为或.常用数列不等式证明中的裂项形式:(1)(;(2)(3)(4);(5)(6))一.数列的通项公式的求法1.定义法:①等差数列通项公式;②等比数列通项公式。例.等差数列是递增数列,前n项和为,且成等比数列,.求数列的通项公式.解:设数列公差为∵成等比数列,∴,即∵,∴………………①∵∴…………②由①②得:,∴2.公式法:已知(即)求,用作差法:。例.已知数列的前项和满足.求数列的通项公式。解:由当时,有……,经验证也满足上式,所以3.作商法:已知求,用作商法:。如数列中,对所有的都有,则______;4.累加法:若求:。例.已知数列满足,,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,例:已知数列,且a1=2,an+1=an+n,求an.解:∴,,,···,将以上各式相加得又因为当n=1,成立,∴5.累乘法:已知求,用累乘法:。例.已知数列满足,,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,例:已知,求通项an.解:∵∴,,…,把以上各项式子相乘得∴又当n=1时,成立∴6.已知递推关系求,用构造法(构造等差、等比数列)。(1)形如只需构造数列,消去带来的差异.其中有多种不同形式=1\*GB3①为常数,即递推公式为(其中p,q均为常数,)。解法:转化为:,其中,再利用换元法转化为等比数列求解。例.已知数列中,,,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.=2\*GB3②为一次多项式,即递推公式为例.设数列:,求.解:设,将代入递推式,得…(1)则,又,故代入(1)得备注:本题也可由,()两式相减得转化为求之.=3\*GB3③为的二次式,则可设;(2)递推公式为(其中p,q均为常数,)。(或,其中p,q,r均为常数)解法:该类型复杂一些。一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再应用类型(1)的方法解决。例.已知数列中,,,求。解:在两边乘以得:令,则,应用例7解法得:所以(3)递推公式为(其中p,q均为常数)。解法:先把原递推公式转化为其中s,t满足,再应用前面类型(2)的方法求解。例.已知数列中,,,,求。解:由可转化为即或这里不妨选用(当然也可选用,大家可以试一试),则是以首项为,公比为的等比数列,所以,应用类型1的方法,分别令,代入上式得个等式累加之,即又,所以。7.形如或的递推数列都可以用倒数法求通项。例:解:取倒数:是等差数列,8、型该类型是等式两边取对数后转化为前边的类型,然后再用递推法或待定系法构造等比数列求出通项。两边取对数得设∴原等式变为即变为基本型。例.已知,求其通项公式。解:由知且,将等式两边取对数得,即,∴为等比数列,其首项为,公比为2∴,∴。通项公式为二.数列的前n项求和的求法1.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:,,.例、已知,求的前n项和.解:由由等比数列求和公式得(利用常用公式)===1-2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.例2、求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,=(分组求和)当时,=3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).例3、求的值解:设………….①将①式右边反序得…………..②(反序)又因为①+②得(反序相加)=89∴S=44.54.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前和公式的推导方法).例4、求和:………①解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积设……….②(设制错位)①-②得(错位相减)再利用等比数列的求和公式得:∴例5、求数列前n项的和.解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积设…………………①………………②(设制错位)①-②得(错位相减)∴5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①;②;③,;④;⑤;⑥. 例6、求数列的前n项和.解:设(裂项)则(裂项求和)==例7、在数列{an}中,,又,求数列{bn}的前n项的和.解:∵∴(裂项)∴数列{bn}的前n项和(裂项求和)==6.通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。例8、求之和.解:由于(找通项及特征)∴=(分组求和)===7、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.例求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.例数列{an}:,求S2002.数列通项课后练习1已知数列中,满足a=6,a+1=2(a+1)(n∈N)求数列的通项公式。2已知数列中,a>0,且a=3,=+1(n∈N)3已知数列中,a=3,a=a+1(n∈N)求数列的通项公式4已知数列中,a=1,a=3a+2,求数列的通项公式5已知数列中,a≠0,a=,a=(n∈N)求a6设数列满足a=4,a=2,a=1若数列成等差数列,求a7设数列中,a=2,a=2a+1求通项公式a8已知数列中,a=1,2a=a+a求a9已知,求an.10已知,求通项an.11已知,求通项an.(1)求和:;(2)在数列中,,且Sn=9,则n=_____;②求和:;①求数列1×4,2×5,3×6,…,,…前项和=;数列求和课后练习[例1]已知,求的前n项和.[例2]设Sn=1+2+3+…+n,n∈N*,求的最大值.二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中、分别是等差数列和等比数列.[例3]求和:………①[例4]求数列前n项的和.三、倒序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到个.[例5]求的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6]求数列的前n项和:,…[例7]求数列{n(n+1)(2n+1)}的前n项和.五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9]求数列的前n项和.[例10]在数列{an}中,,又,求数列{bn}的前n项的和.[例11]求证:一、选择题:1、等差数列{}中,若,则A、45B、75C、180D、3202、已知{}是等比数列,且>0,,则A、5B、10C、15D、203、等差数列{an}中,a1=3,a100=36,则a3+a98等于()(A)36(B)38(C)39(D)424、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为()(A)(B)(C)(D)5、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n等于()(A)9(B)10(C)11(D)126、等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为()(A)130(B)170(C)210(D)160二、填空题:7、已知数列则其前n项和Sn=________.8、数列前n项和为Sn=n2+3n,则其通项an等于____________.9、已知数列1,,前n项的和为____________.三、解答题:10、已知数列{}的前n项和n(n+1)(n+2),试求数列{}的前n项和.11、在数列{}中,已知,,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论