版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省渠县市级名校中考适应性考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是()A. B.C. D.2.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8B.9C.10D.113.下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.4.实数的倒数是()A. B. C. D.5.下列实数中,为无理数的是()A. B. C.﹣5 D.0.31566.下列各组数中,互为相反数的是()A.﹣2与2 B.2与2 C.3与 D.3与37.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1088.某种超薄气球表面的厚度约为,这个数用科学记数法表示为()A. B. C. D.9.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A. B. C. D.10.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90° B.120° C.60° D.30°二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,若双曲线()与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_____.12.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.(1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3,=__.13.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有______(只填写序号).14.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).15.如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=.16.在△ABC中,∠C=90°,sinA=,BC=4,则AB值是_____.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.18.(8分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(﹣2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求△AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是.19.(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?20.(8分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?21.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.22.(10分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.求证:AD是⊙O的切线.若BC=8,tanB=,求⊙O的半径.23.(12分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.24.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.填空:∠ABC=°,BC=;判断△ABC与△DEF是否相似,并证明你的结论.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系2、C【解析】试题分析:已知一个正多边形的一个外角为36°,则这个正多边形的边数是360÷36=10,故选C.考点:多边形的内角和外角.3、B【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.4、D【解析】因为=,所以的倒数是.故选D.5、B【解析】
根据无理数的定义解答即可.【详解】选项A、是分数,是有理数;选项B、是无理数;选项C、﹣5为有理数;选项D、0.3156是有理数;故选B.【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.6、A【解析】
根据只有符号不同的两数互为相反数,可直接判断.【详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【点睛】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.7、C【解析】
依据科学记数法的含义即可判断.【详解】解:48511111=4.85×117,故本题选择C.【点睛】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.8、A【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】,故选:A.【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.10、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故选C.点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】
过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=,则点C坐标为(x,),在Rt△BDF中,BD=x,∠DBF=60°,则BF=,DF=,则点D的坐标为(,),将点C的坐标代入反比例函数解析式可得:,将点D的坐标代入反比例函数解析式可得:,则,解得:,(舍去),故=.故答案为.考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质.12、4﹣【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移抛物线L使该抛物线过点B,∴AB=BC=1,∴AC=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,设OK=t,则AB=BC=1t,∴B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵该抛物线过点B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案为(1)4;(1)﹣.点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.13、②③【解析】
大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.根据事件的类型及概率的意义找到正确选项即可.【详解】解:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是,此结论正确;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;故答案为:②③.【点睛】本题考查了概率的意义,解题的关键在于掌握计算公式.14、<【解析】把点(-1,a)、(-2,b)分别代入抛物线,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案为<.15、【解析】
M、N两点关于对角线AC对称,所以CM=CN,进而求出CN的长度.再利用∠ADN=∠DNC即可求得tan∠ADN.【详解】解:在正方形ABCD中,BC=CD=1.
∵DM=1,
∴CM=2,
∵M、N两点关于对角线AC对称,
∴CN=CM=2.
∵AD∥BC,
∴∠ADN=∠DNC,故答案为【点睛】本题综合考查了正方形的性质,轴对称的性质以及锐角三角函数的定义.16、6【解析】
根据正弦函数的定义得出sinA=,即,即可得出AB的值.【详解】∵sinA=,即,∴AB=1,故答案为1.【点睛】本题考查了解直角三角形,熟练掌握正弦函数的定义是解题的关键.三、解答题(共8题,共72分)17、(1)证明见解析;(2)DE=CE,理由见解析;(3).【解析】试题分析:(1)证明△ABE∽△ACD,从而得出结论;(2)先证明∠CDE=∠ACD,从而得出结论;(3)解直角三角形示得.试题解析:(1)∵∠ABE
=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴;(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED
=∠ABC,∵∠AED
=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE
=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE;(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE
=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴.18、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;【解析】
(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.
(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.
(1)根据A、B的横坐标结合图象即可得出答案.【详解】解:(1)过A作AM⊥x轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标是(1,1),把A的坐标代入y=得:k=1,即反比例函数的解析式是y=.把B(﹣2,n)代入反比例函数的解析式得:n=﹣,即B的坐标是(﹣2,﹣),把A、B的坐标代入y=ax+b得:,解得:k=.b=﹣,即一次函数的解析式是y=x﹣.(2)连接OB,∵y=x﹣,∴当x=0时,y=﹣,即OD=,∴△AOB的面积是S△BOD+S△AOD=××2+××1=.(1)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>1,故答案为﹣2<x<0或x>1.【点睛】本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.19、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有480x+10解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11713∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.20、每件乙种商品的价格为1元,每件甲种商品的价格为70元【解析】
设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.【详解】解:设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,根据题意得:,解得:x=70,经检验,x=70是原方程的解,∴x﹣10=1.答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.【点睛】本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.21、(1);(1),E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).【解析】
(1)设B(x1,5),由已知条件得,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值,最终得到E点坐标.(3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,得n=3或n=﹣2(舍去).求得P点坐标.【详解】解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴抛物线解析式为y=,(1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣x+1.由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF•OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD•OC=×(2﹣)×1=∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.化为顶点式得,S四边形CDBF=﹣(m﹣1)1+.当m=1时,S四边形CDBF最大,为.此时,E点坐标为(1,1).(3)存在.如图1,由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC为直角三角形.当△ABC∽△GNP,且时,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此时P点坐标为(1+,5).当△ABC∽△GNP,且时,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此时P点坐标为(3,5).综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.22、(1)证明见解析;(2).【解析】
(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;
(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【详解】(1)证明:连接,,,,,在中,,,,则为圆的切线;(2)设圆的半径为,在中,,根据勾股定理得:,,在中,,,根据勾股定理得:,在中,,即,解得:.【点睛】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.23、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】
(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题,②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 定制家具设计部管理制度
- 2024年度北京区块链技术应用服务合同
- 2024年度剧本合作开发合同:影视作品改编权协议
- 04版技术成果转化与合作合同
- 2024年度企业合规咨询与管理合同
- 2024年度货运代理委托合同
- 2024版钢材购销合同
- 2024年度环保设备用变频器采购与技术支持合同
- 2024年度学术论文一键生成技术转让合同
- 2024年度电梯门套物流与仓储服务合同
- 钢筋加工厂龙门吊的安装与拆除专项施工方案
- 土力学与地基基础教案
- 方太销售及市场营销管理现状
- Module9 Unit 2 课件-外研版八年级英语上册
- 蔬菜栽培的季节与茬口安排-陇东学院教学提纲
- 三年级《稻草人》阅读测试试题附答案
- 《新闻学概论》第十章
- 超材料(metamaterials)教学讲解课件
- 矿山生态修复主要技术措施表
- 基于PLC的自动化生产线的毕业设计
- 妊娠合并心脏病诊治专家共识
评论
0/150
提交评论