土木工程外文文献及翻译_第1页
土木工程外文文献及翻译_第2页
土木工程外文文献及翻译_第3页
土木工程外文文献及翻译_第4页
土木工程外文文献及翻译_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(建筑工程管理)土

木工程外文文献及翻

2020年4月

多年的企业咨询顾问经脸经过实蟋眄以落地执行的卓越管理方案,值得您下载拥期

外文文献:

MaterialsandStructures

©RILEM2010

10.1617/S11527-010-970

0-y

OriginalArticle

Impactofcrackwidthonbond:confinedandunc

onfinedrebar

DavidW.Law\DengleiTang^ThomasK.C.Molyneaux^ndRebecca

Gravina3

(1SchooloftheBuiltEnvironment,HeriotWattUniversity,Edinburgh,E

)H144AS,UK

(2VicRoads,Melbourne,VIC,Au

)stralia

(3SchoolofCivil,EnvironmentalandChemicalEngineering,RMITUnive

)rsity,Melbourne,VIC,3000,Australia

DavidW.Law

Email:D.W.Law@hw.a

c.uk

Received:14January2010Accepted:14December2010Publis

hedonline:23December2010

Abstract

Thispaperreportstheresultsofaresearchprojectcomparingth

eeffectofsurfacecrackwidthanddegreeofcorrosiononthebon

dstrengthofconfinedandunconfineddeformedl2andl6mm

mildsteelreinforcingbars.Thecorrosionwasinducedbychlorid

econtaminationoftheconcreteandanappliedDCcurrent.Thep

rincipalparametersinvestigatedwereconfinementofthereinf

orcement,thecoverdepth,bardiameter,degreeofcorrosionan

dthesurfacecrackwidth.Theresultsindicatedthatpotentialrel

ationshipbetweenthecrackwidthandthebondstrength.There

sultsalsoshowedanincreaseinbondstrengthatthepointwhere

initialsurfacecrackingwasobservedforbarswithconfiningstirr

ups.Nosuchincreasewasobservedwithunconfinedspecimens

Keywords:bond;corrosion;rebar;cover;crackwidth;concret

e

llntroduction

Thecorrosionofsteelreinforcementisamajorcauseofthed

eteriorationofreinforcedconcretestructuresthroughoutthew

orld.Inuncorrodedstructuresthebondbetweenthesteelreinfo

rcementandtheconcreteensuresthatreinforcedconcreteactsi

nacompositemanner.However,whencorrosionofthesteelocc

ursthiscompositeperformanceisadverselyaffected.Thisisdue

totheformationofcorrosionproductsonthesteelsurface,whic

haffectthebondbetweenthesteelandtheconcrete.

Thedeteriorationofreinforcedconcreteischaracterizedb

yageneralorlocalizedlossofsectiononthereinforcingbarsand

theformationofexpansivecorrosionproducts.Thisdeteriorati

oncanaffectstructuresinanumberofways;theproductionofex

pansiveproductscreatestensilestresseswithintheconcrete,w

hichcanresultincrackingandspallingoftheconcretecover.This

crackingcanleadtoacceleratedingressoftheaggressiveagent

scausingfurthercorrosion.Itcanalsoresultinalossofstrengtha

ndstiffnessoftheconcretecover.Thecorrosionproductscanals

oaffectthebondstrengthbetweentheconcreteandthereinfor

cingsteel.Finallythecorrosionreducesthecrosssectionofthere

inforcingsteel,whichcanaffecttheductilityofthesteelandthel

oadbearingcapacity,whichcanultimatelyimpactupontheserv

iceabilityofthestructureandthestructuralcapacity[12,25].

Previousresearchhasinvestigatedtheimpactofcorrosion

onbond[2-5,7,12,20,23-25,27,29],withanumberofmodelsbe

ingproposed[4,6,9,10,18,19,24,29].Themajorityofthisresearc

hhasfocusedontherelationshipbetweenthelevelofcorrosion(

masslossofsteel)orthecurrentdensitydegree(corrosioncurre

ntappliedinacceleratedtesting)andcrackwidth,orontherelati

onshipbetweenbondstrengthandlevelofcorrosion.Otherres

earchhasinvestigatedthemechanicalbehaviourofcorrodedst

eel[l,ll]andthefrictioncharacteristics[13],However,littlerese

archhasfocusedontherelationshipbetweencrackwidthandbo

nd[23,26,28],aparameterthatcanbemeasuredwithrelativeea

seonactualstructures.

Thecorrosionofthereinforcingsteelresultsintheformatio

nofironoxideswhichoccupyalargervolumethanthatofthepar

entmetal.Thisexpansioncreatestensilestresseswithinthesurr

oundingconcrete,eventuallyleadingtocrackingofthecoverco

ncrete.Oncecrackingoccursthereisalossofconfiningforcefro

mtheconcrete.Thissuggeststhatthelossofbondcapacitycoul

dberelatedtothelongitudinalcrackwidth[12].However,theus

eofconfinementwithintheconcretecancounteractthislossofb

ondcapacitytoacertaindegree.Researchtodatehasprimarilyi

nvolvedspecimenswithconfinement.Thispaperreportsastud

ycomparingthelossofbondofspecimenswithandwithoutconf

inement.

2Experimentalinvestigation

2.1Specimens

Beamendspecimens[28]wereselectedforthisstudy.Thist

ypeofeccentricpulloutor'beamend'typespecimenusesab

ondedlengthrepresentativeoftheanchoragezoneofatypicals

implysupportedbeam.Specimensofrectangularcrosssection

werecastwithalongitudinalreinforcingbarineachcorner,Fig.l.

An80mmplastictubewasprovidedatthebarundemeaththetra

nsversereactiontoensurethatthebondstrengthwasnotenhan

cedduetoa(transverse)compressiveforceactingonthebarove

rthislength.

Fig.lBeamendspecimen

Deformedrebarofl2andl6mmdiameterwithcoverofthre

etimesbardiameterwereinvestigated.Duplicatesetsofconfin

edandunconfinedspecimensweretested.Theconfinedspeci

menshadthreesetsof6mmstainlesssteelstirrupsequallyspace

dfromtheplastictube,at75mmcentres.

Thisrepresentsfourgroupsofspecimenswithacombinati

onofdifferentbardiameterandwith/withoutconfinement.The

specimenswereselectedinordertoinvestigatetheinfluenceof

barsize,confinementandcrackwidthonbondstrength.

2.2Materials

ThemixdesignisshownJablel.ThecementwasTypelPortl

andcement,theaggregatewasbasaltwithspecificgravity2.99.

Thecoarseandfineaggregatewerepreparedinaccordancewit

hAS1141-2000.MixingwasundertakeninaccordancewithASl

012.2-1994.Specimenswerecuredfor28daysunderwethessia

nbeforetesting.

TablelConcretemixdesign

10mm7mmw

MaterCemenw/washeasheda

SandSaltSlump

ialtcdaggreggrega

gatete

Quant381kg/0.4517kg/463kg/463kg/18.84kg/

140±25mm

itym39m3m3m3m3

Inordertocomparebondstrengthforthedifferentconcret

ecompressivestrengths,Eq.lisusedtonormalizebondstrengt

hfornon-corrodedspecimensashasbeenusedbyotherresearc

her[8].

whereisthebondstrengthforgrade40concrete,Texptlisth

eexperimentalbondstrengthandfcistheexperimentalcompre

ssivestrength.

Thetensilestrengthofthe<J>12and<I>16mmsteelbarswasn

ominally500MPa,whichequatestoafailureloadof56.5andl00.

5kN,respectively.

2.3Experimentmethodology

Acceleratedcorrosionhasbeenusedbyanumberofauthor

storeplicatethecorrosionofthereinforcingsteelhappeningint

henaturalenvironment[2,3,5,6,10,18,20,24,27,28,30].Theseh

aveinvolvedexperimentsusingimpressedcurrentsorartificial

weatheringwithwet/drycyclesandelevatedtemperaturestore

ducethetimeuntilcorrosion,whilemaintainingdeterioration

mechanismsrepresentativeofnaturalexposure.Studiesusingi

mpressedcurrentshaveusedcurrentdensitiesbetweenlOO|jA

/cm2and500mA/cm2[20].Researchhassuggestedthatcurren

tdensitiesupto200|jA/cm2resultinsimilarstressesduringthee

arlystagesofcorrosionwhencomparedtol00|jA/cm2[21].Ass

uchanappliedcurrentdensityof200|jA/cm2wasselectedforthi

sstudy—representativeofthelowerendofthespectrumofsuch

currentdensitiesadoptedinpreviousresearch.However,cauti

onshouldbeappliedwhenacceleratingthecorrosionusingimp

ressedcurrentastheaccelerationprocessdoesnotexactlyrepli

catethemechanismsinvolvedinactualstructures.Inaccelerate

dteststhepitsarenotallowedtoprogressnaturally,andtherem

aybeamoreuniformcorrosiononthesurface.Alsotherateofcor

rosionmayimpactonthecorrosionproducts,suchthatdifferen

toxidationstateproductsmaybeformed,whichcouldimpacto

nbond.

Thesteelbarsservedastheanodeandfourmildsteelmetalp

lateswerefixedonthesurfacetoserveascathodes.Sponges(spr

ayedwithsaltwater)wereplacedbetweenthemetalplatesandc

oncretetoprovideanadequatecontact,Fig.2.

Fig.2Acceleratedcorrosionsystem

Whentherequiredcrackwidthwasachievedforaparticular

bar,theimpressedcurrentwasdiscontinuedforthatbar.Thespe

cimenwasremovedforpullouttestingwhenallfourlocationsex

hibitedthetargetcrackwidth.AveragesurfacecrackwidthsofO.

05,0.5,landl.5mmwereadoptedasthetargetcrackwidths.The

surfacecrackwidthwasmeasuredat20mmintervalsalongthele

ngthofthebar,beginning20mmfromtheendofthe(plastictub

e)bondbreakerusinganopticalmicroscope.Thelevelofaccura

cyinthemeasurementswas±0.02mm.Measurementsofcrack

widthweretakenonthesurfacenormaltothebardirectionregar

dlessoftheactualcrackorientationatthatlocation.

Bondstrengthtestswereconductedbymeansofahandope

ratedhydrauliqackandacustom-builttestrigasshowninFig.3.

TheloadingschemeisillustratedinFig.4.Aplastictubeoflength

80mmwasprovidedattheendoftheconcretesectionundernea

ththetransversereactiontoensurethatthebondstrengthwasn

otenhancedbythereactive(compressive)force(actingnormalt

othebar).Thespecimenwaspositionedsothatanaxialforcewas

appliedtothebarbeingtested.Therestraintsweresufficientlyri

gidtoensureminimalrotationortwistingofthespecimendurin

gloading.

Fig.3Pull-outtest,16mmbarunconfined

Fig.4Schematicofloading./Voteonlytestbarshownforclarity

3Experimentalresultsanddiscussion

3.1Visualinspection

Followingtheacceleratedcorrosionphaseeachspecimen

wasvisuallyinspectedforthelocationofcracks,meancrackwidt

handmaximumcrackwidth(Sect.2.3).

Whileeachspecimenhadameantargetcrackwidthforeach

bar,variationsinthiscrackwidthwereobservedpriortopulloutt

esting.Thisisduetocorrosionandcrackingbeingadynamicpro

cesswithcrackspropagatingatdifferentrates.Thus,whileindivi

dualbarsweredisconnected,oncethetargetcrackwidthhadbe

enachieved,corrosionandcrackpropagationcontinued(toso

meextent)untilallbarshadachievedthetargetcrackwidthandp

ullouttestsconducted.Thisresultedinarangeofdataforthema

ximumandmeancrackwidthsforthepullouttests.

Thevisualinspectionofthespecimensshowedthreestages

tothecrackingprocess.Theinitialcracksoccurredinaveryshort

period,usuallygeneratedwithinafewdays.Afterthat,mostcrac

ksgrewataconstantrateuntiltheyreachedlmm,3-4weeksafte

rfirstcracking.Aftercrackshadreachedlmmtheythengrewver

yslowly,withsomecracksnotincreasingatall.Fortheconfineda

ndunconfinedspecimensthesurfacecrackstendedtooccuront

hesideofthespecimens(asopposedtothetoporbottom)andto

followthelineofthebars.Inthecaseoftheunconfinedspecimen

singeneraltheseweretheonlycrackwhileitwascommoninthec

asesofconfinedspecimenstoobservecracksthatwerealignedv

erticallydowntheside-adjacenttooneofthelinks,Fig.5.

Fig.5Typicalcrackpatterns

Duringthepull-outtestingthemostcommonfailuremode

forbothconfinedandunconfinedwassplittingfailure—withth

einitial(pre-test)crackscausedbythecorrosionenlargingunde

rloadandultimatelyleadingtothesectionfailingexhibitingspal

lingofthetopcorner/edge,Fig.6.Howeverforseveraloftheconf

inedspecimens,asecondmodeoffailurealsooccurredwithdia

gonal(shearlike)cracksappearinginthesidewalls,Fig.7.Theap

pearanceofthesecracksdidnotappeartoberelatedtotheprese

nceofverticalcracksobserved(inspecimenswithstirrups)durin

gthecorrosionphaseasreportedabove.

Fig.6Longitudinalcrackingafterpull-out

Fig.7Diagonalcrackingafterpull-out

Thebarswereinitially(precasting)cleanedwithal2%hydr

ochloricacidsolution,thenwashedindistilledwaterandneutral

izedbyacalciumhydroxidesolutionbeforebeingwashedindist

illedwateragain.Followingthepull-outtests,thecorrodedbars

werecleanedinthesamewayandweighedagain.

Thecorrosiondegreewasdeterminedusingthefollowinge

quation

whereGOistheinitialweightofthesteelbarbeforecorrosio

n,Gisthefinalweightofthesteelbarafterremovalofthepost-tes

tcorrosionproducts,gOistheweightperunitlengthofthesteelb

ar(0.888andl.58g/mmfor<t>12and(P16mmbars,respectively),

listheembeddedbondlength.

Figures8and9showsteelbarswithvaryingdegreeofcorros

ion.Themajorityexhibitedvisiblepitting,similartothatobserve

donreinforcementinactualstructures,Fig.9.However,asmalln

umberofothersexhibitedsignificantoverallsectionloss,witha

moreuniformlevelofcorrosion,Fig.8,whichmaybeafunctionof

theaccelerationmethodology.

Fig.8Corrodedl2mmbarwithapproximately30%massloss

Fig.9Corrodedl6mmbarwithapproximatelyl5%massloss

3.2Bondstressandcrackwidth

FigurelOshowsthevariationofbondstresswithmeancrack

widthforl6mmbarsandFig.llforthel2mmbars.Figuresl2an

dl3showthedataforthemaximumcrackwidth.

Fig.lOMeancrackwidthversusbondstressforl6mmbars

Fig.llMeancrackwidthversusbondstressforl2mmbars

Fig.l2Maximumcracl<widthversusbondstressforl6mmbars

Fig.l3Maximumcrackwidthversusbondstressforl2mmbars

Thedatashowaninitialincreaseinbondstrengthforthel2

mmspecimenswithstirrups,followedbyasignificantdecreasei

nbond,whichisinagreementwithotherauthors[12,15].Forthe

16mmspecimensanincreaseonthecontrolbondstresswasobs

ervedforspecimenswith0.28and0.35mmmeancrackwidths,h

owever,adecreaseinbondstresswasobservedforatthemeancr

ackwidthof0.05mm.

Thel2mmbarswithstirrupsdisplayedanincreaseinbonds

tressofapproximately25%fromthecontrolvaluestothemaxim

umbondstress.Anincreaseofapproximatelyl4%wasobserve

dforthel6mmspecimens.Otherresearchers[17,24,25]havere

portedenhancementsofbondstressofbetweenl0and60%du

etoconfinement,slightlyhighertothatobservedintheseexperi

ment.Howevertheloadingtechniquesandcoverdepthshaven

otallbeenthesame.Variationsinexperimentaltechniquesinclu

deashorterembeddedlengthandalowercover.Thevariationo

ntheproposedempiricalrelationshipbetweenbondstrength,

degreeofcorrosion,barsize,cover,linkdetailsandtensilestren

gthpredictedbyRodriguez[24]hasbeendiscussedindetailinTa

ngetal.[28].Theanalysisdemonstratesthattherewouldbeanex

pectedenhancementofbondstrengthduetoconfinementofa

pproximately25%—correspondingtoachangeofbondstreng

thofapproximately0.75MPaforthel6mmbars(assessedata2

%sectionloss).Forthel2mmbarsthecorrespondingeffectofco

nfinementisfoundtobeapproximately35%correspondingtoa

1.0MPadifferenceinbondstress.Theexperimentalresults(14a

nd25%,above)are60-70%ofthesevalues.

Bothsetsofdataindicatearelationshipshowingdecreasin

gbondstrengthwith(visiblesurface)crackwidth.Aregressiona

nalysisofthebondstrengthdatarevealsabetterlinearrelations

hipwiththemaximumcrackwidthasopposedtothemeancrack

width(excludingtheuncrackedconfinedspecimens),Table2.

Table2Bestfitparameters,crackwidthversusbondstrength

UnconfinConfinUnconfinConfin

edl2mmedl2mmedl6mmedl6mm

UnconfinConfinUnconfinConfin

edl2mmedl2mmedl6mmedl6mm

Meancrackwidth

R20.9200.6370.6720.659

Slope(m)-3.997-3.653-2.999-8.848

Intercept

7.5608.1226.4968.746

(b)

Maximumcrackwidth

R20.9370.8550.7140.616

Slope(m)-2.719-2.968-1.815-5.330

Intercept

7.8058.4036.7079.636

(b)

Therewasalsoasignificantlybetterfitfortheunconfinedsp

ecimensthantheconfinedspecimens.Thisisconsistentwiththe

observationthatintheunconfinedspecimensthebondstrengt

hwillberelatedtothebondbetweenthebarsandtheconcrete,w

hichwillbeaffectedbythelevelofcorrosionpresent,whichitself

willinfluencethecrackwidth.Inconfinedspecimenstheconfini

ngsteelwillimpactuponboththebondandthecracking.

3.3Corrosiondegreeandbondstress

Itisapparentthat(Fig.l4)forcorrosiondegreeslessthan5%

thebondstresscorrelatedwell.However,asthedegreeofcorros

ionincreasedtherewasnoobservablecorrelationatall.Thiscon

trastswiththerelationshipbetweentheobservedcrackwidthan

dbondstress,whichgivesareasonablecorrelation,evenascrac

kwidthsincreaseto2and2.5mm.Apossibleexplanationforthis

variationisthatintheinitialstagesofcorrosionvirtuallyallthedis

solvedironionsreacttoformexpansivecorrosionproducts.This

reactionimpactsonboththebondstressandtheformationofcr

acks.However,oncecrackshavebeenformeditispossibleforth

eironionstobetransportedalongthecrackandoutoftheconcre

te.Asthebondhasalreadybeeneffectivelylostatthecrackanyir

onionsdissolvingatthecrackandbeingdirectlytransportedout

oftheconcretewillcauseanincreaseinthedegreeofcorrosio^b

utnotaffectthesurfacecrackwidth.Thelocation,orientationan

dchemistrywithinthecrackwillcontroltherelationshipbetwee

nbondstressanddegreeofcorrosion,whichwillvaryfromspeci

mentospecimen.Hencethelargevariationsincorrosiondegre

eandbondstressforhighlevelsofcorrosion.

Fig.l4Bondstressversuscorrosiondegree,12mmbars,unconfinedspecim

en

Significantlylargercrackwidthswereobservedfortheunco

nfinedspecimens,comparedtotheconfinedspecimenswithsi

milarlevelsofcorrosionandmasslost.Thelargestobservedcrac

kforunconfinedspecimenswas2.5mmcomparedtol.4mmfor

theconfinedspecimens.Thisisasexpectedandisadirectresulto

ftheconfinementwhichlimitsthedegreeofcracking.

3.4Effectofconfinement

Theunconfinedspecimensforbothl6andl2mmbarsdidn

otdisplaytheinitialincreaseinbondstrengthobservedforthec

onfinedbars.Indeedtheunconfinedspecimenswithcracksalldi

splayedareducedbondstresscomparedtothecontrolspecime

ns.Thisisinagreementwithotherauthors[16,24]findingsforcra

ckedspecimens.IncrackedcorrodedspecimensFangobserved

asubstantialreductioninbondstrengthfordeformedbarswith

outstirrups,whileRodriguezobservedbondstrengthsofhighly

corrodedcrackedspecimenswithoutstirrupswereclosetozero

,whilehighlycorrodedcrackedspecimenswithstirrupsretaine

dbondstrengthsofbetween3and4MPa.Inuncorrodedspecim

ensChananotedanincreaseinbondstrengthduetostirrupsofb

etweenl0and20%[14].HoweverRodriguezandFangobserve

dnovariationduetothepresenceofconfinementinuncorroded

bars.

Thedataisperhapsunexpectedasitcouldbeanticipatedth

atthecorrosionproductswouldleadtoanincreaseinbondduet

otheincreaseininternalpressures,causedbythecorrosionprod

uctsincreasingtheconfinementandmechanicalinterlockingar

oundthebar,coupledwithincreasedroughnessofthebarresult

inginagreaterfrictionbetweenthebarandthesurroundingcon

crete.However,thesepressureswouldthenrelievedbythesubs

equentcrackingoftheconcrete,whichwouldcontributetothed

ecreaseinthebondstrengthascrackwidthsincrease.Apossible

hypothesisisthatduetothelevelofcover,threetimesbardiamet

er,theeffectofconfinementbythestirrupsisreduced,suchthati

thaslittleimpactonthebondstressinuncrackedconcrete.How

ever,oncecrackinghastakenplacetheconfinementdoeshavea

beneficialeffectonthebond.

Itmayalsobethatthecompressivestrengthoftheconcrete

combinedwiththecoverwillhaveaneffectonthebondstressesf

oruncorrodedspecimens.Thedatapresentedherehasacovero

fthreetimesbardiameterandastrengthof40MPa,otherresearc

hrangesfroml.5tofourtimescoverwithcompressivestrengths

from40to77MPa.

3.5Comparisonofl2andl6mmrebar

Themaximumbondstressforl6mmunconfinedbarswas

measuredat8.06MPaandforthel2mmbarsitwas8.43MPa.The

sebothcorrespondedtothecontrolspecimenswithnocorrosio

n.Theunconfinedspecimensforboththel2andl6mmbarssho

wednoincreaseinbondstressduetocorrosion.Fortheconfined

specimensthemaximumbondstressforthecontrolspecimens

were7.29MPaforthel2mmbarsand6.34MPaforthel6mmbar

s.Themaximumbondstressforbothsetsofconfinedspecimens

correspondedtopointoftheinitialcracking.Themaximumbon

dstresseswereobservedatameancrackwidthofO.Olmmforthe

12mmbarsand0.28mmforthel6mmbars.Thecorresponding

bondstresseswere,8.45and7.20MPa.Overallthel2mmbarsdi

splayedhigherbondstressescomparedtothel6mmbarsatallc

rackwidths.Thisisattributedtoadifferentfailuremode.Thel6

mmspecimensdemonstratesplittingfailurewhilethel2mmba

rsbondfailure.

3.6Effectofcastingposition

Therewasnosignificantdifferenceofbondstrengthduetot

hepositionofthebar(toporbottomcast)oncecrackingwasobs

erved,Fig.l5.Forcontrolspecimens,withnocorrosion,howeve

r,thebottomcastbarshadaslightlyhigherbondstressthanthet

opcastbars.Theseobservationsareinagreementwithotheraut

hors[4,ll,15,22].Itisgenerallyacceptedthatuncorrodedbotto

mcastbarshavesignificantlyimprovedbondcomparedtotopc

astbarsduetothecorrosionproductsfillingthevoidsthatareoft

enpresentundertopcastbarsasthecorrosionprogresses[14].T

hecorrosionalsoactsasan'anchor',similartotheribsondefo

rmedbars,toincreasethebond.Overall,themeanvalueofbond

stressforallbars(corrodedanduncorroded)locatedinthetopw

erewithinl%ofthemeanbondstressofallbarslocatedinthebot

tomofthesection——forbothunconfinedandconfinedbars.This

isprobablyduetothelevelofcover.Theresultsreportedpreviou

slyareonspecimenswithonetimescover[14],However,atthree

timescoveritwouldbeanticipatedthatgreatercompactionwo

uldbeachievedaroundthetopcastbars.Thustheareaofvoidsw

ouldbereducedandthustheeffectofthecorrosionproductfillin

gthesevoidsandincreasingthebondstrengthwouldbereduce

d.

Fig.l5Bondstressversusmeancrackwidthforl2mmbars,topandbottomca

stpositions,confinedspecimen

Conclusions

Arelationshipwasobservedbetweencrackwidthandbond

stress.Thecorrelationwasbetterformaximumcrackwidthand

bondstressthanformeancrackwidthandbondstress.

Confinedbarsdisplayedahigherbondstressatthepointofi

nitialcrackingthanwherenocorrosionhadoccurred.Ascrackwi

dthincreasethebondstressreducedsignificantly.

Unconfinedbarsdisplayedadecreaseinbondstressatiniti

alcracking,followedbyafurtherdecreaseascrackingincreased.

Topcastbarsdisplayedahigherbondstressinspecimenswi

thnocorrosion.Oncecrackinghadoccurrednovariationbetwe

entopandbottomcastbarswasobserved.

Thel2mmbarsdisplayedhigherbondstressvaluesthanl6

mmwithnocorrosion,controlspecimens,andatsimilarcrackwi

dths.

Agoodcorrelationwasobservedbetweenbondstressand

degreeofcorrosionwasobservedatlowlevelsofcorrosion(less

than5%).However,athigherlevelsofcorrosionnocorrelationw

asdiscerned.

Overalltheresultsindicatedapotentialrelationshipbetwe

enthemaximumcrackwidthandthebond.Resultsshownherei

nshouldbeinterpretedwithcautionasthisvariationmaybenot

onlyduetovariationsbetweenacceleratedcorrosionandnatur

alcorrosionbutalsoduetothecomplexityofthecrackingmecha

nisminreality.

中文译文:

约束和无约束的钢筋对裂缝宽度的影响

收稿日期:2010年1月14纳稿日期:2010年12月14日

线上发表时间:2010年1月23日

摘要

本报告公布了局限约束和自由的变形对粘结强度12、16毫

米钢筋的表面腐蚀程度和裂纹影响的比较结果。腐蚀是氯化物污

染的混凝土的诱导和外加直流电流的引起的。调查的主要参数有

钢筋剥离,保护层厚度,钢筋直径,腐蚀程度和表面裂缝宽度。

结果表明了裂缝宽度和粘结强度之间的潜在关系。同时还发现在

围箍筋处发现表面裂纹的地方粘结强度增加,而无侧限的样本中

没有观察到粘结强度增加。

关键词:粘结;腐蚀;螺纹钢;保护层;裂缝宽度;混凝土

引言

在世界各地,钢筋的腐蚀是钢筋混凝土结构的恶化的重要原

因。在未腐蚀的结构中钢筋和混凝土之间的粘结使钢筋混凝土处

于有利状态。然而,当钢铁的腐蚀发生时,会对这种积极性能产

生不利影响。这是由于钢表面形成了腐蚀产物,从而影响了钢和

混凝土之间的粘结。

钢筋混凝土恶化是由钢筋和形成的膨胀腐蚀产物造成的局部

损失。这种情况的恶化在许多方面影响结构;膨胀产品的产生造成

混凝土的拉应力,这可能会导致混凝土保护层开裂和剥落的。这

种开裂可导致更严重的恶化和进一步的腐蚀。它也可以导致在混

凝土保护层的强度和刚度的损失。腐蚀产物也可以影响混凝土与

钢筋之间的粘结强度。最终腐蚀减少钢筋截面面积,影响钢筋的

延展性和承载能力,从而最终影响结构适用性和结构承载力[12,

25]0

以往的研究调查腐蚀对粘结的影响[2-5,7,12,20,23-25

,27,29],提出了数据模型[4,6,9,10,18,1924,29]o

本研究主要研究腐蚀(钢材质量损失)水平或电流密度程度(腐

蚀电流在加速测试中的应用)和裂缝宽度之间的关系,或粘结强

度和腐蚀程度之间的关系。其他研究已调查的锈蚀力学性能[1,

11]和摩擦特性[13]。然而,很少有人研究都集中在裂缝宽度与粘

结[23,26,28]之间的关系上,此参数易与实际结构相联系。

加强钢筋的腐蚀导致生成铁氧化物,它的体积大于原钢材。

这种扩张造成周围的混凝土内的拉应力,最终导致混凝土保护层

开裂。一旦开裂发生,混凝土紧箍力就会损失。这表明粘结能力

的损失可能与纵向裂缝宽度有关[12]。然而,以混凝土的剥离可

以在一定程度上抵消粘结力的损失。最新研究主要与剥离样本有

关。本文报道的一项研究比较了有侧限和无侧限样本的粘结力损

失。

2.实验研究

2.1样本

梁端样本[28]被选定为这项研究的研究对象。这种撤去偏心

或"梁端”模式样本以一个典型的简支梁锚固区的粘结长度支撑。

样本的矩形截面投在纵向钢筋的各处,如图1。由于没有增强下

方横反应的钢筋,试样提供了一个80毫米的塑料管,以确保粘结

强度(横向)压缩力超过这个长度的钢筋。

图1梁端试样

试验调查了由3倍直径厚的保护层保护的12和16毫米直径

的钢筋。重复测试有侧限和自由样本。在密闭的塑料管中有3套

6毫米的不锈钢箍筋从其间穿过,在75毫米中心。

这代表了四组不同钢筋直径和有侧限/无约束的样本。以调查

钢筋规格,混凝土剥离和裂缝宽度对粘结强度的影响。

2.2材料

配合比设计,如表1所示。水泥是I型硅酸盐水泥,骨料为

玄武岩溶重2.99。根据AS1141—2000进行粗、细集料的制备。

拌合根据AS1141—1994进行。测试前水浴养护28天。

表1混凝土配合比设计

材水泥w/c砂10mm7mm盐含量塌落度

料集料集料

结381kg/m30.4517kg/m3kg/m3kg/m3kg/m3140±

果25mm

为了比较不同的混凝土抗压强度,粘结强度,Eq。公式1已

被其他研究者用于正常化粘结强度的非腐蚀样本。

1

为40级混凝土的粘结强度,exptl为实验粘结强度和R是实

验抗压强度。

①12和①16毫米钢筋的抗拉强度是500兆帕,分别相当于一

个56.5和100.5kN的破坏载荷。

2.3实验方法

加速腐蚀已被许多作者用于重现在自然环境中发生的腐蚀钢

筋钢[2,3,5,6,10,18,20,24,27,28,30],这些相关

实验使用外加电流或干湿周期人工风化和升高温度延缓腐蚀时

间,同时保持恶化机制处于自然状态。采用外加电流的研究使用

的电流密度在100kiA/cm2与500mA/cm2之间[20]。有研究表

明,电流密度200|jA/cm2与100pA/cm2相比,200的结果与

早期阶段的腐蚀更相似[21]。随着施加电流密度200pA/cm2被

选定为研究使用电流,这在以前的研究中成为电流密度频谱的低

端代表。然而,应谨慎应用外加电流的加速腐蚀,加速过程并不

完全复制在实际结构中所涉及的机制。在加速测试中不允许违背

自然的发展,并有可能在表面上更均匀腐蚀。腐蚀率也可能会影

响腐蚀的产品,这些产品可能会形成不同的氧化状态,这可能会

影响粘结强度。

钢筋作为阳极和四个碳钢金属板固定在表面作为阴极。金属

板和混凝土之间放置海绵(用盐水喷洒)提供足够的接触,如图2。

图2加速腐蚀系统

当裂缝宽度要求需适应特殊钢筋时应该终止施加外加电流。

当所有四个位置出现规定的裂缝宽度,试样就会被拆除撤离测试。

平均表面裂缝宽度0.05,0.5,1和1.5毫米作为目标裂缝宽度。

表面裂纹宽度沿钢筋长度测量间隔20mm,从约束(塑料管)末

端开始20mm用断路器光学显微镜测量。测量精度为±0.02毫米。

从钢筋表面测量裂缝宽度,不考虑裂缝实际方位在何处。

粘结强度测试通过手动操作液压千斤顶和一个定制的试验装

置,如图3所示。加载方案见图4。长80毫米的塑料管在末端提

供了一个横向反应的具体部分,以确保粘结强度不会因为内力(压

力)提高而增加。样本定位使轴向力,适用于被测试的钢筋。给

样本足够刚性的约束可以确保在加载过程中最小的旋转或扭曲。

图3拉出测试,16毫米钢筋不承压

图4加载示意图。注:只测试显示棒

3实验结果与讨论

3.1目视检查

加速腐蚀阶段后,检查每个样本的裂缝的位置,平均裂缝宽

度和最大裂缝宽度(第2.3款)。

虽然每个钢筋样本都有平均目标裂缝宽度,但是裂缝宽度的

变化在观察前拉出测试。这是由于腐蚀和开裂是一个动态的过程,

裂缝是以不同的速度传播的。因此,当个别钢筋被拉断的时候,

一旦目标裂缝宽度已经达到,腐蚀和裂纹在一定程度上继续扩展,

直到所有的钢筋已达到目标的裂缝宽度,再终止试验进行。这产

生了一系列的最大裂缝和终止测试时的平均裂缝宽度数据。

视觉检测的样本显示了三个阶段的裂解过程。初始裂缝发生

在很短的时间内,通常在几天之内产生。在此之后,大多数裂缝

以一个恒定的速度增长,直到3-4周后首次开裂,他们达到1毫

米。裂缝达到了1毫米后,它们的增长速度非常缓慢,甚至一些

裂缝一点都不增加。侧限和自由的样本表面裂纹往往发生在侧面

(如对侧的顶部或底部),并沿钢筋方向发展。一般情况下无侧

限的样本只有仅有的一部分裂缝,而自由的样本裂缝的发展却十

分常见,观察到的裂缝垂直对齐下边,垂直向下侧相邻的链接,

如图5.

图5典型裂纹模式

在拉出测试时最常见的侧限和自由的故障是剥离失败,这是

由于随着在荷载作用下腐蚀的扩大形成裂缝,最终导致右上角/边

缘剥落,如图6。但是一些侧限的样本,存在第二种破坏模式,

在侧墙对角线出现裂缝,如图7。在腐蚀阶段,这些裂缝的出现

与观察到的垂直裂缝如上面报道的,并不相关。

图6拉出后纵向开裂

图7角开裂后拉出

钢筋最初(预制)由12%的盐酸溶液清洗,然后在蒸憎水清

洗,另外蒸悟水洗涤之前由氢氧化钙溶液中和。锈蚀钢筋拉出来

测试之后,以同样的方式进行清洗,并再次称重。

使用下列公式确定的腐蚀程度

其中Go是钢筋腐蚀前的初始重量,G是最终去除腐蚀产物后的测

试后的钢筋重量,g。是每单位长度的钢筋重量(①12和①16毫米

钢筋分别0.888和1.58g/«米),I是嵌入式的键长。

图8和图9显示有不同程度的腐蚀钢筋。多数表现出可见的

凹陷,类似的实际结构,如图9。然而,少数其他钢筋表现出显

着的整体部分损失,更均匀的腐蚀水平,如图8,这可能是一个

加速方法的功能。

图812毫米钢筋腐蚀、约30%的质量损失

图916毫米钢筋腐蚀、约15%的质量损失

3.2粘结应力和裂缝宽度

图10显示了16毫米的钢筋粘结应力与平均裂缝宽度的变

化。图11为12毫米的钢筋的。图12和图13显示的最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论