云南省玉溪市江川县2024-2025学年高三5月高考模拟试题数学试题试卷含解析_第1页
云南省玉溪市江川县2024-2025学年高三5月高考模拟试题数学试题试卷含解析_第2页
云南省玉溪市江川县2024-2025学年高三5月高考模拟试题数学试题试卷含解析_第3页
云南省玉溪市江川县2024-2025学年高三5月高考模拟试题数学试题试卷含解析_第4页
云南省玉溪市江川县2024-2025学年高三5月高考模拟试题数学试题试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉溪市江川县2024-2025学年高三5月高考模拟试题数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若平面向量,满足,则的最大值为()A. B. C. D.2.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20 B.30 C.50 D.603.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个 B.个 C.个 D.个4.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是()A.小王或小李 B.小王 C.小董 D.小李5.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()A. B. C. D.6.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于()A. B. C. D.7.已知定义在上的函数满足,且当时,,则方程的最小实根的值为()A. B. C. D.8.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A. B.C. D.9.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.10.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A. B. C. D.11.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.812.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则“”是“”的__________条件.14.的二项展开式中,含项的系数为__________.15.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.16.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.18.(12分)等差数列的公差为2,分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;(2)若数列满足,求数列的前2020项的和.19.(12分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.20.(12分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.(1)求曲线的极坐标方程和直线的参数方程;(2)已知直线与曲线交于,满足为的中点,求.21.(12分)如图,三棱锥中,,,,,.(1)求证:;(2)求直线与平面所成角的正弦值.22.(10分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的锐二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.2.D【解析】

先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D.本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.3.C【解析】

计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球.故选:本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.4.D【解析】

根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.本题考查推理证明的实际应用.5.C【解析】

作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.6.A【解析】

由已知,设.可得.于是可得,进而得出结论.【详解】解:依题意,设.则.,.设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.则,.故选:A.本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.7.C【解析】

先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,,所以,故当时,,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,,则,即,此时令,得,所以最小实根为411.故选:C.本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.8.D【解析】

先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以,因为的递增区间是:,,由,,得:,,所以函数的单调递增区间为().故选:D.本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.9.C【解析】

画出几何体的图形,然后转化判断四个命题的真假即可.【详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.10.A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.11.B【解析】

根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.本题考查了等比数列的计算,意在考查学生的计算能力.12.D【解析】

求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13.充分必要【解析】

根据充分条件和必要条件的定义可判断两者之间的条件关系.【详解】当时,有,故“”是“”的充分条件.当时,有,故“”是“”的必要条件.故“”是“”的充分必要条件,故答案为:充分必要.本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对应的集合的包含关系来判断,本题属于容易题.14.【解析】

写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.15.【解析】

根据题意设为椭圆上任意一点,表达出,再根据二次函数的对称轴与求解的关系分析最值求解即可.【详解】因为椭圆的离心率是,,所以,故椭圆方程为.因为以为圆心且与椭圆有公共点的圆的最大半径为,所以椭圆上的点到点的距离的最大值为.设为椭圆上任意一点,则.所以因为的对称轴为.(i)当时,在上单调递增,在上单调递减.此时,解得.(ii)当时,在上单调递减.此时,解得舍去.综上,椭圆方程为.故答案为:本题主要考查了椭圆上的点到定点的距离最值问题,需要根据题意设椭圆上的点,再求出距离,根据二次函数的对称轴与区间的关系分析最值的取值点分类讨论求解.属于中档题.16.-7【解析】

由题意得AB+【详解】由题意得ABBC+∴AB+突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【详解】(1)由题意,当时,由,可得,令,则只需,当时,;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.18.(1),;(2).【解析】

(1)根据题意同时利用等差、等比数列的通项公式即可求得数列和的通项公式;(2)求出数列的通项公式,再利用错位相减法即可求得数列的前2020项的和.【详解】(1)依题意得:,所以,所以解得设等比数列的公比为,所以又(2)由(1)知,因为①当时,②由①②得,,即,又当时,不满足上式,.数列的前2020项的和设③,则④,由③④得:,所以,所以.本题考查等差数列和等比数列的通项公式、性质,错位相减法求和,考查学生的逻辑推理能力,化归与转化能力及综合运用数学知识解决问题的能力.考查的核心素养是逻辑推理与数学运算.是中档题.19.(1)(2)(ⅰ)见解析(ⅱ)点的坐标为.【解析】

(1)由题意得,再由的关系求出,即可得椭圆的标准方程;(2)(i)设,的中点为,,设直线的方程为,代入椭圆方程中,运用根与系数的关系和中点坐标公式,结合三点共线的方法:斜率相等,即可得证;(ii)利用两点间的距离公式及弦长公式将表示出来,由换元法的对勾函数的单调性,可得取最小值时的条件获得等量关系,从而确定点的坐标.【详解】解:(1)由题意得,,所以,所以椭圆方程为(2)设,的中点为,(ⅰ)证明:由,可设直线的方程为,代入椭圆方程,得,所以,所以,则直线的斜率为,因为,所以,所以三点共线,所以平分线段;(ii)由两点间的距离公式得由弦长公式得所以,令,则,由在上递增,可得,即时,取得最小值4,所以当取最小值时,点的坐标为此题考那可是椭圆方程和性质,主要考查椭圆方程的运用,运用根与系数的关系和中点坐标公式,同时考查弦长公式,属于较难题.20.(1),;(2).【解析】

(1)由曲线的参数方程消去参数可得曲线的普通方程,由此可求曲线的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;(2)将直线的参数方程,代入曲线的普通方程,整

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论