版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
生物科学生物技术科技英语阅读精选(1)
精选自Nature,PloSBiology等顶尖杂志。图文表并茂。生物科学、生物技术、生
物工程的参考资料。可用于考研参考,课外阅读练习,论文写作参考,专业英语学习的资
料。
Therapeutictargetsincancercell
metabolismandautophagy
NatureBiotechnology
30,
671-678
(2012)
doi:10.1038/nbt.2285
Publishedonline
10July2012
Abstract
Themetabolismofcancercellsisreprogrammedbothby
oncogenesignalingandbydysregulationofmetabolic
enzymes.Theresultingalteredmetabolismsupports
cellularproliferationandsurvivalbutleavescancercells
dependentonacontinuoussupplyofnutrients.Thus,
manymetabolicenzymeshavebecometargetsfornew
cancertherapies.Recently,twoprocesses—expressionof
specificisoformsofmetabolicenzymesand
autophagy—havebeenshowntobecrucialforthe
adaptationoftumorcellstochangesinnutrientavailability.
Anincreasingnumberofapprovedandexperimental
therapeuticstargetthesetwoprocesses.Abetter
understandingofthemolecularbasisofcancer-associated
metabolicchangesmayleadtoimprovedcancertherapies.
Activemetabolicpathwaysinproliferatingcellsinvolving
glucoseandglutaminecatabolismareinterconnectedand
linkedtomacromolecularsynthesisandenergybalance.
Keymetabolicenzymesdiscussedinthetext(shownin
blue)areactivelyinvestigatedastherapeutictargetsfor
cancertreatment.Metabolicenzymestargetedby
registeredagentsareshowninred.ACL,ATPcitratelyase;
aKG,a-ketoglutarate;DH,dehydrofolate;DHFR,
dehydrofolatereductase;dTMP,deoxythymidine
monophosphate;JUMP,deoxyuridinemonophosphate;
F-2,6-BP,fructose-2,6-bisphosphate;F6P,
fructose-6-phosphate;FBP,fructose-1,6-bisphosphate;FH,
fumaratehydratase;G6P,glucose-6-phosphate;GLS,
glutaminase;HK2,hexokinase2;IDH,isocitrate
dehydrogenase;LDHA,lactatedehydrogenaseA;MCT1,4,
monocarboxylatetransporter1,4;ME,malicenzyme;OAA,
oxaloacetate;PDH,pyruvatedehydrogenasecomplex;
PDK,pyruvatedehydrogenasekinase;PEP,
phosphoenolpyruvate;PFK,phosphofructokinase;PGAM,
phosphoglyceratemutase;PHGDH,phosphoglycerate
dehydrogenase;PKM2,pyruvatekinaseM2isoform;R5P,
ribose-5-phosphate;SDH,succinatedehydrogenase;TCA,
tricarboxylicacid;THF,tetrahydrofolate;TYMS,
thymidylatesynthase.
Seelarger
1.Figure2:Modulatorsoftheautophagypathway.
Variousgrowthandnutrientsignalingpathwaysare
associatedwithregulationofautophagy.Following
inhibitionofmTOR,theULK/Atg13/FIP200complexis
activatedandinitiatesautophagosome/phagophore
formation.TheclassIIIPI3kinase(Vps34)-Atg14L-Becn1
complexalsoregulatestheautophagosomenucleation
step.Toexpandtheautophagosomemembrane,two
ubiquitin-likeconjugationsystemsarerequiredfor
conjugationofLC3andAtg12tophosphatidyl
ethanolamine(PE)ontheautophagosomemembraneand
Atg5,respectively.Further,theAtg12-Atg5conjugate
interactswithAtg16,presumablylocatedonthesurfaceof
theautophagosomemembrane.Thecomplete
autophagosomefuseswiththelysosometoformthe
autolysosome,andcargomoleculesengulfedby
autophagosomesaredegradedbylysosomalhydrolases
andrecycledbacktothecytoplasm.Several
pharmacologicalinhibitors(red)modulatedistinctstepsof
autophagy.Someautophagyproteinswithenzymatic
activity(showningreenandyellow)couldbecrucialtarget
proteinsformodulationofautophagy.Pointswhere
inhibitorscouldbepotentiallydevelopedareshownas
blankboxes.CQ,chloroquine.
Introduction
Researchoverseveraldecadeshasidentifiedmany
oncogenesandtumorsuppressorsthatarefrequently
alteredinvarioustumors.Asubstantialproportionofthese
oncogenicabnormalitiesisassociatedwithgrowth
signalingpathways.Recently,increasingevidencehas
suggestedthatgrowthsignalingpathwaysdirectlycontrol
cellmetabolism,growthandproliferationthroughthe
regulationofmetabolicenzymes.Inaddition,individual
metabolicenzymeshavebeenreportedtobemutatedor
amplifiedduringtumorprogression.Understandinghow
metabolicpathwaysarealteredintumorsandhowcancer
cellsbenefitfromtumor-specificmetabolicchangesmay
contributetotheidentificationofnoveltherapeutictargets
andthedevelopmentofmoreeffectivecancertherapies.
Althoughalteredmetabolismisbeneficialtothecancercell,
itcancreateanincreaseddemandfornutrientstosupport
cellgrowthandproliferation.Atthesametime,theinner
massofatumormaylackadequatenutrientsbefore
sufficientangiogenesishasoccurred.Metabolicstressisa
stronginducerofautophagy,acatabolicprocessleadingto
degradationofcellularcomponentsthroughthelysosomal
system.Cancercellsuseautophagyasasurvivalstrategy
toprovideessentialbiomoleculesrequiredforcellviability
undermetabolicstress.Incontrast,basalautophagy
maintainsintracellularorganellehomeostasisby
eliminatingdamagedproteinsandorganelles,which
preventsgenerationofexcessreactiveoxygenspecies
(ROS)andgenomeinstability.Thus,autophagyisthought
tohaveakeyroleinthesuppressionoftumorigenesis.
Understandingthecontext-dependentroleofautophagyin
cancerdevelopmentshouldpresentnewopportunitiesfor
thedesignofcancertherapeutics.
Inthefirstsectionofthisreviewwesummarizerecent
progressinidentifyingenzymesthatcontributetothe
alteredmetabolismofcancercellsandinexploitingthese
enzymesastherapeutictargets.Inparticular,recent
findingsindicatethatalteredmetabolismincancercells
reliesonthepreferentialuseofalternativeisoformsof
enzymesorgenomicamplificationofenzymesinvolvedin
glucoseandaminoacidmetabolism.Inthesecondsection,
wediscusshowcancercellsadapttobioenergetic
challengesbyusingautophagyasacellsurvivalstrategy
andsummarizeongoingeffortstotargetautophagyin
combinationwithconventionalchemotherapy.
Metabolicenzymesalteredincancercells
Cancercellsmaintaintheirgrowthadvantagethrough
persistentactivationofgrowthsignalingpathwaysand
inactivationoftumorsuppressors.Canonicaloncogenic
signalingpathways,suchasphosphatidylinositol3-kinase
(PI3K)-AKT/ProteinKinaseB(PKB)andmammaliantarget
ofrapamycin(mTOR),directlyreprogramcorecarbon
metabolism,leadingtogreaternutrientuptakeandgreater
macromolecularbiosynthesistosupportcellproliferation.
Indeed,severalmetabolicenzymes,suchashexokinase2
(HK2),lactatedehydrogenaseA(LDHA)andpyruvate
dehydrogenasekinase1(PDK1),aredirecttargetsof
oncogenictranscriptionfactors,suchasMYCand
hypoxia-induciblefactor-1a(HIF-1a).Moreover,emerging
evidencesuggeststhatmetabolitesderivedfromaltered
metabolisminfluenceoncogenicsignalingpathwaysina
reciprocalmanner,andthatsuchinteractionsmaybethe
basisfortumorprogressionand/orresistanceto
conventionalchemotherapeuticapproaches.The
regulatoryconnectionsbetweensignalingpathwaysand
metabolicenzymeshavebeenextensivelyreviewed1,2.
Variousapproachestotargetoncogenicsignaling
pathwayshavebeenexploredforthepast20yearsand
haveshowngreatsuccessinclinicaltrials.Morerecently,
metabolicalterationsinvolvedincancerprogressionhave
becometargetsforpharmaceuticaldevelopment.Table1
liststhemetabolicenzymesthathavebeeninvestigatedin
oncologyclinicaltrials.Additionalmetabolicenzymesare
beingstudiedtodeterminetheirrolesintheprogressionof
variouscancersandtheirpotentialastherapeutictargets
(Fig.1).
Figure1:Coremetabolicpathwaysandmetabolic
enzymessuitableascancertherapeutictargets.
Glutamine
Activemetabolicpathwaysinproliferatingcellsinvolving
glucoseandglutaminecatabolismareinterconnectedand
linkedtomacromolecularsynthesisandenergybalance.
Keymetabolicenzymesdiscussedinthetext(shownin
blue)areactivelyinvestigatedastherapeutictargetsfor
cancertreatment.Metabolicenzymestargetedby
registeredagentsareshowninred.ACL,ATPcitratelyase;
aKG,a-ketoglutarate;DH,dehydrofolate;DHFR,
dehydrofolatereductase;dTMP,deoxythymidine
monophosphate;dUMP,deoxyuridinemonophosphate;
F-2,6-BP,fructose-2,6-bisphosphate;F6P,
fructose-6-phosphate;FBP,fructose-1,6-bisphosphate;FH,
fumaratehydratase;G6P,glucose-6-phosphate;GLS,
glutaminase;HK2,hexokinase2;IDH,isocitrate
dehydrogenase;LDHA,lactatedehydrogenaseA;MCT1,4,
monocarboxylatetransporter1,4;ME,malicenzyme;OAA,
oxaloacetate;PDH,pyruvatedehydrogenasecomplex;
PDK,pyruvatedehydrogenasekinase;PEP,
phosphoenolpyruvate;PFK,phosphofructokinase;PGAM,
phosphoglyceratemutase;PHGDH,phosphoglycerate
dehydrogenase;PKM2,pyruvatekinaseM2isoform;R5P,
ribose-5-phosphate;SDH,succinatedehydrogenase;TCA,
tricarboxylicacid;THF,tetrahydrofolate;TYMS,
thymidylatesynthase.
Table1:Potentialtherapeuticcompoundstargeting
metabolicenzymesoftumors
Glucosemetabolism.Inthe1920s,theGerman
biochemistOttoWarburgshowedthattumorcellsdiffer
fromnormalcellsintheirutilizationofglucose,an
observationthatisprobablythefirstevidenceofmetabolic
alterationsincancer3.Whereasnormalcellsdirectglucose
tomitochondrialoxidativephosphorylationtogenerate
ATPwhenoxygenisabundant,tumorcellsgenerally
exhibitgreaterglucoseuptake,glycolyticfluxandlactate
secretion,regardlessofoxygenavailability.This
phenomenon,calledaerobicglycolysis,formedthebasis
forthedevelopmentof18F-deoxyglucosepositronemission
tomographytoimagetumordevelopmentandregression
inpatients.Althoughtheroleandregulationofaerobic
glycolysisincancercellsarenotfullyunderstood,ithas
beensuggestedthatthisprocesssuppliesformsof
energeticandanabolicsubstratesthatfavormassive
macromolecularsynthesis.
UnderstandingoftheWarburgeffectspurredeffortsto
preferentiallyeliminatecancercellsbytargetingglucose
metabolism.Asglucoseenterscellsviaspecific
transporters,astraightforwardstrategywouldbetoblock
glucoseuptakebyinhibitingglucosetransporters.Atleast
onesmall-moleculeinhibitorofglucosetransporters
(silybin,alsoknownassilibinin)hasbeendeveloped,and
clinicaltrialsareongoingtotestitstoxicityandefficacy415.
However,asglucosetransportershaveseveralisoforms,
mostofwhicharehighlyexpressedincancercells,itwill
bechallengingtodevelopcompoundsthatinhibitall
isoformswithanacceptabletherapeuticwindow.
Analternativestrategyforinhibitingglucosemetabolism
reliesontheglucoseanalog2-deoxy-D-glucose.This
moleculeenterscellsviaglucosetransportersbutis
trappedas2-deoxyglucose-6-phosphateafter
phosphorylationbyhexokinaseandcannotbefurther
metabolized.Accumulationof
2-deoxyglucose-6-phosphateisthoughttoinhibitglycolytic
enzymesandglucosecatabolism.Although
2-deoxy-D-glucosehasbeeneffectiveinpreclinicaland
clinicalstudies,thistreatmenthasnotbeenfullyexplored
becauseofconcernsrelatedtopotentialtoxicityathigh
doses6.
Morerecently,ithasbeendiscoveredthatcancercells
seemtopreferentiallydependonspecificisoformsof
glycolyticenzymes6,promptingasearchfor
isoform-specificinhibitors,whichshouldincreasedrug
specificitytocancercellsandavoidtoxicitytonormalcells.
Keymetabolicpathwaysandenzymesbeinginvestigated
aspotentialtargetsincludethemuscle-specificisoformof
hexokinase2andphosphofructokinase2(Fig.1).
Tumor-specificexpressionoftheseisoformshasledto
identificationofisoform-specificinhibitorsthathave
substantiallysuppressedtumorgrowthinpreclinical
studies7,8andarebeingtestedclinically(Table1).
Arate-limitingstepinglycolysisisconversionof
phosphoenolpyruvatetopyruvateandgenerationofATP
bypyruvatekinase.Asplicingvariantofpyruvatekinase
foundinmuscle,PKM2,ispredominantlyexpressedin
embryoniccellsandtumorcells.Theglycolytic
intermediatefructose-1,6-bisphosphatebindstoPKM2and
convertsittoanenzymaticallyactiveform,whereasthe
tyrosinekinasesignalingpathwayinactivatesPKM2
throughthereleaseoffructose-1,6-bisphosphatefrom
PKM2(ref.9).Becausemostcancercellsexhibit
constitutivelyactivetyrosinekinasesignaling,theirlevelof
PKM2enzymeactivityislower.Thishasbeenproposedto
beimportantforcellproliferation,aslowPKM2activity
leadstoaccumulationofglycolyticintermediates,manyof
whicheitherareprecursorsofmacromolecularsynthesis,
suchasnucleotidesandaminoacids,orcanbeusedfor
generationofNADPH10.Laterstudieshavesuggestedthat
phosphoenolpyruvateactsasaphosphatedonorforthe
upstreamenzymephosphoglyceratemutasein
PKM2-expressingcells,whichfurtherpromotesglycolysis
andbiosyntheticprocesses11.Indeed,PKM2cellsmaintain
higherfluxtotheserinesyntheticpathway12.The
regulationofPKM2-mediatedserinesynthesismaybe
importantfortumorgrowthandmammaliantargetof
rapamycincomplex1(mTORCI)signaling(seebelow)12,13
Onthebasisofthesedata,avarietyofPKM2-specific
small-moleculeinhibitorsoractivatorshavebeen
investigatedfortheirtherapeuticpotentialinpreclinical
studies14,15,16,andsomearebeingtestedinclinicaltrials6
(Table1).
Generationanddisposaloflactate,theendproductof
glycolysis,hasbeenextensivelystudiedinconnectionwith
cancertherapy.Becauselactatedehydrogenaseconverts
pyruvatetolactatewhileoxidizingNADHtoNAD+to
supportcontinuedglycolyticflux,thisenzymehasbeen
consideredoneofthecriticaltargetsforsuppressing
elevatedglycolysis.LactatedehydrogenaseA(LDHA),an
isoformoflactatedehydrogenase,ispreferentially
expressedinmanycancersandisatranscriptionaltarget
ofMYCandHIF-1a.RNAinterference(RNAi)knockdown
experimentsinvariouscancercellshaveshownthatLDHA
hasanimportantroleintumorgrowth17,18119.Anatural
phenolderivative,gossypol,anditsderivativescompete
withNADHbindingtolactatedehydrogenaseandinhibit
lactatedehydrogenaseactivity.Despiteitslackof
specificity,gossypolisbeingtestedinclinicaltrialsfor
variouscancers20.Thegossypolanalogshavebeen
screenedforsmall-moleculeinhibitorsspecificforLDHA.
Amongthem,
3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthale
ne-1-carboxylicacid(FX11)effectivelyinhibitscancercell
growthinvitroandinvivobyincreasingoxidativestress21.
Morerecently,A/-hydroxyindole-basedcompoundshave
beenidentifiedasisoform-specificinhibitorsofLDHAthat
competewithitssubstratespyruvateandthecofactor
NADH22.
Pyruvatedehydrogenasekinase1(PDK1)isanother
transcriptionaltargetofMYCandHIF-1athatseemsto
haveacriticalroleinmanycancers.Itinactivatespyruvate
dehydrogenase,whichconvertspyruvatetoacetyl-CoAin
themitochondria.Asaresult,pyruvateisshuttledfromthe
tricarboxylicacidcycletoproducelactate.Accordingly,
specificinhibitorsofPDK1canblockaerobicglycolysis
andincreasetherateofoxidativephosphorylation.For
example,dichloroacetate,whichiswidelyusedforthe
treatmentoflacticacidosis,hasshownsuppressionof
tumorgrowthinpre-clinicalcancermodelsaswellasin
clinicaltrialsofprimaryglioblastoma23,24125(Table1),
althoughitsmechanismofactionrequiresfurther
investigationasitseemsthatthispyruvatemimetic
compoundlacksisoformselectivityamongPDKs.
Lactateaccumulatedinsidecancercellsisexported
throughthemonocarboxylatetransporterfamily.Impaired
functionofmonocarboxylatetransporterscauses
substantialdefectsincancercellproliferationandtumor
growth,indicatingthatcancercellsdependonefficient
lactatesecretion26127.Moreover,secretedlactatecanbe
takenupbyanisoformofmonocarboxylatetransporter,
MCT1,andusedasafuelsourcetosupportproliferationof
neighboringcellsthatarerelativelyoxidative.This
suggeststhatinthesametumor,cancercellswithdiverse
metabolicprofilesexchangetheirmetabolitesforsurvival
andgrowthinasymbioticmanner.Severalcompounds
thatblockthefunctionofMCT1arebeingdevelopedas
potentialcancertherapeutics28,29,30(Table1).
CompoundTargetTumortype/cancercelltypesClinical
stages
Glucosemetabolism
2-DGGlucosetransporterProstatecancerPhase1
Silybin/silibininProstatecancer(terminated)
Phase1/2
2-DGHK2ProstatecancerPhase1
Lonidamine(terminated)
Phase1
(Europe)
TLN-232/CAP-23PKM2Metastaticrenalcellcarcinoma,Phase2
melanoma
Gossypol/AT-101LDHAMultiplecancersPhase1/2
Dichloroacetate(DCA)PDKBraincancerPhase1
Non-smallcelllungcancerPhase2
Headandneckcancer
AZD3965MCT1AdvancedsolidtumorsPhase1/2
Nucleicacidmetabolism
MethotrexateFolatecycle(DHFR)MultiplecancersRegistered
Pemetrexed
5-FluorouracilThymidinesynthesis(TYMS)MultiplecancersRegistered
CompoundTargetTumortype/cancercelltypesClinical
stages
HydroxyureaDeoxynucleotidesynthesisMultiplecancersRegistered
(Ribonucleotidereductase:RNR)
Gemcitabine(Gemzar),Nucleotideincorporation(DNAMultiplecancersRegistered
Fludarabine(Fludara)polymerase/RNR)
Aminoacidmetabolism
-AsparginaseAsparagineLeukemiaRegistered
ArgininedeaminaseArginineMultiplecancersPhase2
(ADI-PEGconjugated)
NADmetabolism
FK866/APO866NicotinamideCutaneousT-celllymphoma
CHS828/GMX1777phosphoribosyl-transferase(CTCL),B-cellchronic
lymphocyticleukemia(CLL),
melanoma
Metastaticmelanoma,solid
tumors,lymphomas
Manycompoundstargetingglycolyticenzymeshave
synergisticanticancereffectsincombinationwith
conventionalchemotherapyorradiotherapyandwith
pathway-targetedagents.Atpresent,somecombinations
withagentstargetingglucosemetabolismhaveshown
promiseinclinicaltrials,andvariousenzymesinvolvedin
thereactionsbranchingfromglucosemetabolismthatare
alteredincancercellsarealsobeingactively
investigated31(Fig.1).
Glutaminemetabolism.Althoughtheinitialstudiesof
cancercellmetabolismfocusedonglucose,itisnowclear
thatmetabolismofaminoacidsandfattyacidsisalso
reprogrammedtoprovidethebuildingblocksforcancer
cellgrowthandproliferation.Glutamineisthemost
abundantaminoacidinthebloodandamajorsourceof
nitrogenforthesynthesisofnucleotides,aminoacidsand
glutathione.Inhighlyproliferativecells,itservesasa
carbonsourcetoreplenishthetricarboxylicacidcycleto
supportcellbioenergeticsandanabolicreactions.Several
groupshaverecentlyproposedthatcancercellsgrownin
hypoxicconditionsincreasetheirdependenceon
glutaminemetabolism,asglutamine-derived
a-ketoglutaratecanundergoreductivecarboxylationto
producecitrateandlipids32,33134.Therefore,glutamine
metabolisminhypoxiccancercellsseemstobean
essentialpathwayandanattractivetherapeutictarget.
Afterbeingtakenupbycells,glutamineisconvertedto
glutamatebythemitochondrialenzymeglutaminase.
Glutamateissubsequentlyconvertedtoa-ketoglutarateby
eitherglutamatedehydrogenaseoraminotransferases.As
anintermediateofthetricarboxylicacidcycle,
a-ketoglutaratecanprovidecarbonbackbonesforcellular
anabolicreactions35(Fig.1).Althoughtheoncogenic
signalingpathwaysinvolvedinrewiringglutamine
metabolismarenotfullyunderstood,multiplereportshave
suggestedthattheoncogenictranscriptionfactorMYC
controlsglutaminecatabolismbyregulatingexpressionof
glutaminetransportersandenzymesinvolvedin
glutaminolysis35136.Inaddition,MYC-overexpressingcells
aremarkedlysensitivetoglutaminedeprivation,
suggestingthattheyareaddictedtoglutamine35137.
Recently,Myc-inducedtumorigenesishasbeenassociated
withglutaminemetabolism,asshownbythecorrelation
betweenMycexpressionandthemetabolicprofilesof
mousetumors38.
Glutaminasehastwoisoforms.Glutaminase1(GLS1)is
thoughttobetheprimaryenzymeinvolvedin
glutaminolysis35,36,whereasGLS2seemstohavea
differentfunctionrelatedtotheantioxidantsystem39.
Recently,GLS1wasidentifiedusingunbiased
high-throughputscreeningasatargetofasmall-molecule
inhibitorthatblocksRho-GTPase-driventransformation40.
Moreover,anisoformofGLS1,glutaminaseC,is
consideredanimportanttargetowingtoitselevatedlevel
intumorsshowingglutamineaddiction.Recent
structure-basedstudiessuggestthatitsactivityis
regulatedbyinorganicphosphate,whichishighlyenriched
inmitochondriaunderhypoxia41,42.
Severalglutamineanalogs,includingthecompound
6-diazo-5-oxo-L-norleucine,havebeentestedas
therapeuticagentspreclinicallyandclinically.Although
treatmentwiththeseagentshasledtosubstantial
inhibitionofcancercellgrowthinvitroandinmouse
xenografts,thecompoundsarehighlytoxicowingtotheir
lackofspecificity43.Recently,aGLS1-specificinhibitor,
bis-2-(5-phenylacetimido-1,2,4,thiadiazol-2-yl)ethylsulfide
(BPTES),wasidentified44andshowntosubstantially
inhibitcancercellgrowthinvitroandinmousetumor
models38145.Asaselectiveinhibitor,BPTESmayachievea
largertherapeuticwindowthanglutamineanalogsbecause
specificinhibitionofGLS1wouldsuppressatumorrelying
onglutaminolysiswithoutaffectingotherimportant
functionsofglutamineinnormaltissues.
Anotherglutaminolysisenzyme,glutamatedehydrogenase,
isimportantforglioblastomacellsurvivalunderconditions
inwhichglucosecatabolismisimpairedortheAKT
pathwayisinhibited46.Epigallocatechingallate,apotent
andspecificinhibitorofglutamatedehydrogenase,blocks
glutaminolysisandsensitizesglioblastomacellstoglucose
deprivation46,47.Asglutaminecansupportcancercell
survivalunderglucoselimitationandhypoxia,the
suppressionofglutaminecatabolismwouldbesynergistic
withinhibitionofgrowthsignalingpathwaysrelatedto
glucosecatabolism.
Serinesyntheticpathways.Glycolyticintermediates
derivedfromenhancedglycolysisincancercellscanbe
shuntedtogeneratenonessentialaminoacids,lipidsand
nucleotidesthatfacilitatecancercellgrowthand
proliferation.Forexample,cellsexpressingPKM2
accumulatetheglycolyticintermediate3-phosphoglycerate,
whichcanbeshuntedtotheserinesyntheticpathway.As
aresult,PKM2cells(thatis,cancercells)canmaintain
mTORCIactivityandproliferationinserine-depleted
medium,whereasPKM1cells(thatis,normalcells)
cannot12,13.Notably,therate-limitingenzymeinvolvedin
branchingglycolysistotheserinesyntheticpathways,
phosphoglyceratedehydrogenase,isamplifiedinasubset
ofmelanomaandestrogenreceptor-negativebreast
cancer48,49,suggestingthatgreaterfluxintotheserine
syntheticpathwayprovidesselectiveadvantagetotumor
cells.Overexpressionofthisgeneleadstocellular
transformation,andRNAisuppressionofPHGDHleadsto
inhibitionofcancercellproliferationandtransformation48,49
Thereforephosphoglyceratedehydrogenaseisan
attractivemetabolictargetforcancertherapeutics,
togetherwithotherenzymesinvolvedintheserine
syntheticpathway.
Serineisanimportantnonessentialaminoacidthatcanbe
usedforsynthesisofotheraminoacids,suchasglycine
andcysteine,andforgenerationofphospholipids.In
addition,whenserineismetabolizedtoglycine,
tetrahydrofolateisconvertedto
5,10-methylene-tetrahydrofolate,acriticalstepin
maintainingthefolatecyclefornucleotidesynthesis50(Fig.
1).Thedependenceofcancercellsonthefolatecyclehas
beendemonstratedbysuccessfuldevelopmentof
antifolatedrugs,oneoftheearliestchemotherapies
developedinthelastcenturyandwidelyusedintheclinic
totreatvarioustypesofcancer(Table1).Examples
include5-fluorouracil,whichinhibitsthymidinesynthesis,
andmethotrexate,whichblockspurinesynthesisby
inhibitingdihydrofolatereductase,whichconverts
dihydrofolatetotetrahydrofolate(Table1).
Autophagy
Autophagyisaself-degradationprocesswherebycytosolic
componentsandorganellesaresequesteredindouble
membrane-boundvesiclesanddeliveredtolysosomesfor
degradationandrecycling(Fig.2).
PI3K/AktEnergy
Nutrients
Rapamycin
analogs
I—□
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深圳龙华入学购房合同
- 上海市饲料买卖合同
- 上海劳动法合同续签规定
- 安顺学院《大学英语写作》2023-2024学年第一学期期末试卷
- 安康职业技术学院《中医外科学针灸》2023-2024学年第一学期期末试卷
- 安徽中澳科技职业学院《物联网信息安全技术》2023-2024学年第一学期期末试卷
- 安徽卫生健康职业学院《艺术工程投标流程技巧与劳动实践技能》2023-2024学年第一学期期末试卷
- 安徽商贸职业技术学院《素描速写》2023-2024学年第一学期期末试卷
- 安徽汽车职业技术学院《服装质量检验与实验》2023-2024学年第一学期期末试卷
- 安徽建筑大学《新媒体创新创业导论》2023-2024学年第一学期期末试卷
- 2023年副主任医师(副高)-神经内科学(副高)考试历年真题荟萃带答案
- 建筑施工安全检查标准jgj592011图解
- 锅炉过热蒸汽温度控制系统课程设计
- 四川省成都市2021-2022学年高一(上)期末调研考试物理试题 Word版
- OFM软件的一些使用技巧
- 国开电大《工程数学(本)》形成性考核作业5答案
- 《公司金融》模拟试题答案 东北财经大学2023年春
- 2023-2024学年四川省乐山市小学数学四年级上册期末模考考试题
- 严蔚敏版数据结构课后习题答案-完整版
- 工程进度管理制度
- DL-T 870-2021 火力发电企业设备点检定修管理导则
评论
0/150
提交评论