生物科学生物技术科技英语阅读(一)_第1页
生物科学生物技术科技英语阅读(一)_第2页
生物科学生物技术科技英语阅读(一)_第3页
生物科学生物技术科技英语阅读(一)_第4页
生物科学生物技术科技英语阅读(一)_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

生物科学生物技术科技英语阅读精选(1)

精选自Nature,PloSBiology等顶尖杂志。图文表并茂。生物科学、生物技术、生

物工程的参考资料。可用于考研参考,课外阅读练习,论文写作参考,专业英语学习的资

料。

Therapeutictargetsincancercell

metabolismandautophagy

NatureBiotechnology

30,

671-678

(2012)

doi:10.1038/nbt.2285

Publishedonline

10July2012

Abstract

Themetabolismofcancercellsisreprogrammedbothby

oncogenesignalingandbydysregulationofmetabolic

enzymes.Theresultingalteredmetabolismsupports

cellularproliferationandsurvivalbutleavescancercells

dependentonacontinuoussupplyofnutrients.Thus,

manymetabolicenzymeshavebecometargetsfornew

cancertherapies.Recently,twoprocesses—expressionof

specificisoformsofmetabolicenzymesand

autophagy—havebeenshowntobecrucialforthe

adaptationoftumorcellstochangesinnutrientavailability.

Anincreasingnumberofapprovedandexperimental

therapeuticstargetthesetwoprocesses.Abetter

understandingofthemolecularbasisofcancer-associated

metabolicchangesmayleadtoimprovedcancertherapies.

Activemetabolicpathwaysinproliferatingcellsinvolving

glucoseandglutaminecatabolismareinterconnectedand

linkedtomacromolecularsynthesisandenergybalance.

Keymetabolicenzymesdiscussedinthetext(shownin

blue)areactivelyinvestigatedastherapeutictargetsfor

cancertreatment.Metabolicenzymestargetedby

registeredagentsareshowninred.ACL,ATPcitratelyase;

aKG,a-ketoglutarate;DH,dehydrofolate;DHFR,

dehydrofolatereductase;dTMP,deoxythymidine

monophosphate;JUMP,deoxyuridinemonophosphate;

F-2,6-BP,fructose-2,6-bisphosphate;F6P,

fructose-6-phosphate;FBP,fructose-1,6-bisphosphate;FH,

fumaratehydratase;G6P,glucose-6-phosphate;GLS,

glutaminase;HK2,hexokinase2;IDH,isocitrate

dehydrogenase;LDHA,lactatedehydrogenaseA;MCT1,4,

monocarboxylatetransporter1,4;ME,malicenzyme;OAA,

oxaloacetate;PDH,pyruvatedehydrogenasecomplex;

PDK,pyruvatedehydrogenasekinase;PEP,

phosphoenolpyruvate;PFK,phosphofructokinase;PGAM,

phosphoglyceratemutase;PHGDH,phosphoglycerate

dehydrogenase;PKM2,pyruvatekinaseM2isoform;R5P,

ribose-5-phosphate;SDH,succinatedehydrogenase;TCA,

tricarboxylicacid;THF,tetrahydrofolate;TYMS,

thymidylatesynthase.

Seelarger

1.Figure2:Modulatorsoftheautophagypathway.

Variousgrowthandnutrientsignalingpathwaysare

associatedwithregulationofautophagy.Following

inhibitionofmTOR,theULK/Atg13/FIP200complexis

activatedandinitiatesautophagosome/phagophore

formation.TheclassIIIPI3kinase(Vps34)-Atg14L-Becn1

complexalsoregulatestheautophagosomenucleation

step.Toexpandtheautophagosomemembrane,two

ubiquitin-likeconjugationsystemsarerequiredfor

conjugationofLC3andAtg12tophosphatidyl

ethanolamine(PE)ontheautophagosomemembraneand

Atg5,respectively.Further,theAtg12-Atg5conjugate

interactswithAtg16,presumablylocatedonthesurfaceof

theautophagosomemembrane.Thecomplete

autophagosomefuseswiththelysosometoformthe

autolysosome,andcargomoleculesengulfedby

autophagosomesaredegradedbylysosomalhydrolases

andrecycledbacktothecytoplasm.Several

pharmacologicalinhibitors(red)modulatedistinctstepsof

autophagy.Someautophagyproteinswithenzymatic

activity(showningreenandyellow)couldbecrucialtarget

proteinsformodulationofautophagy.Pointswhere

inhibitorscouldbepotentiallydevelopedareshownas

blankboxes.CQ,chloroquine.

Introduction

Researchoverseveraldecadeshasidentifiedmany

oncogenesandtumorsuppressorsthatarefrequently

alteredinvarioustumors.Asubstantialproportionofthese

oncogenicabnormalitiesisassociatedwithgrowth

signalingpathways.Recently,increasingevidencehas

suggestedthatgrowthsignalingpathwaysdirectlycontrol

cellmetabolism,growthandproliferationthroughthe

regulationofmetabolicenzymes.Inaddition,individual

metabolicenzymeshavebeenreportedtobemutatedor

amplifiedduringtumorprogression.Understandinghow

metabolicpathwaysarealteredintumorsandhowcancer

cellsbenefitfromtumor-specificmetabolicchangesmay

contributetotheidentificationofnoveltherapeutictargets

andthedevelopmentofmoreeffectivecancertherapies.

Althoughalteredmetabolismisbeneficialtothecancercell,

itcancreateanincreaseddemandfornutrientstosupport

cellgrowthandproliferation.Atthesametime,theinner

massofatumormaylackadequatenutrientsbefore

sufficientangiogenesishasoccurred.Metabolicstressisa

stronginducerofautophagy,acatabolicprocessleadingto

degradationofcellularcomponentsthroughthelysosomal

system.Cancercellsuseautophagyasasurvivalstrategy

toprovideessentialbiomoleculesrequiredforcellviability

undermetabolicstress.Incontrast,basalautophagy

maintainsintracellularorganellehomeostasisby

eliminatingdamagedproteinsandorganelles,which

preventsgenerationofexcessreactiveoxygenspecies

(ROS)andgenomeinstability.Thus,autophagyisthought

tohaveakeyroleinthesuppressionoftumorigenesis.

Understandingthecontext-dependentroleofautophagyin

cancerdevelopmentshouldpresentnewopportunitiesfor

thedesignofcancertherapeutics.

Inthefirstsectionofthisreviewwesummarizerecent

progressinidentifyingenzymesthatcontributetothe

alteredmetabolismofcancercellsandinexploitingthese

enzymesastherapeutictargets.Inparticular,recent

findingsindicatethatalteredmetabolismincancercells

reliesonthepreferentialuseofalternativeisoformsof

enzymesorgenomicamplificationofenzymesinvolvedin

glucoseandaminoacidmetabolism.Inthesecondsection,

wediscusshowcancercellsadapttobioenergetic

challengesbyusingautophagyasacellsurvivalstrategy

andsummarizeongoingeffortstotargetautophagyin

combinationwithconventionalchemotherapy.

Metabolicenzymesalteredincancercells

Cancercellsmaintaintheirgrowthadvantagethrough

persistentactivationofgrowthsignalingpathwaysand

inactivationoftumorsuppressors.Canonicaloncogenic

signalingpathways,suchasphosphatidylinositol3-kinase

(PI3K)-AKT/ProteinKinaseB(PKB)andmammaliantarget

ofrapamycin(mTOR),directlyreprogramcorecarbon

metabolism,leadingtogreaternutrientuptakeandgreater

macromolecularbiosynthesistosupportcellproliferation.

Indeed,severalmetabolicenzymes,suchashexokinase2

(HK2),lactatedehydrogenaseA(LDHA)andpyruvate

dehydrogenasekinase1(PDK1),aredirecttargetsof

oncogenictranscriptionfactors,suchasMYCand

hypoxia-induciblefactor-1a(HIF-1a).Moreover,emerging

evidencesuggeststhatmetabolitesderivedfromaltered

metabolisminfluenceoncogenicsignalingpathwaysina

reciprocalmanner,andthatsuchinteractionsmaybethe

basisfortumorprogressionand/orresistanceto

conventionalchemotherapeuticapproaches.The

regulatoryconnectionsbetweensignalingpathwaysand

metabolicenzymeshavebeenextensivelyreviewed1,2.

Variousapproachestotargetoncogenicsignaling

pathwayshavebeenexploredforthepast20yearsand

haveshowngreatsuccessinclinicaltrials.Morerecently,

metabolicalterationsinvolvedincancerprogressionhave

becometargetsforpharmaceuticaldevelopment.Table1

liststhemetabolicenzymesthathavebeeninvestigatedin

oncologyclinicaltrials.Additionalmetabolicenzymesare

beingstudiedtodeterminetheirrolesintheprogressionof

variouscancersandtheirpotentialastherapeutictargets

(Fig.1).

Figure1:Coremetabolicpathwaysandmetabolic

enzymessuitableascancertherapeutictargets.

Glutamine

Activemetabolicpathwaysinproliferatingcellsinvolving

glucoseandglutaminecatabolismareinterconnectedand

linkedtomacromolecularsynthesisandenergybalance.

Keymetabolicenzymesdiscussedinthetext(shownin

blue)areactivelyinvestigatedastherapeutictargetsfor

cancertreatment.Metabolicenzymestargetedby

registeredagentsareshowninred.ACL,ATPcitratelyase;

aKG,a-ketoglutarate;DH,dehydrofolate;DHFR,

dehydrofolatereductase;dTMP,deoxythymidine

monophosphate;dUMP,deoxyuridinemonophosphate;

F-2,6-BP,fructose-2,6-bisphosphate;F6P,

fructose-6-phosphate;FBP,fructose-1,6-bisphosphate;FH,

fumaratehydratase;G6P,glucose-6-phosphate;GLS,

glutaminase;HK2,hexokinase2;IDH,isocitrate

dehydrogenase;LDHA,lactatedehydrogenaseA;MCT1,4,

monocarboxylatetransporter1,4;ME,malicenzyme;OAA,

oxaloacetate;PDH,pyruvatedehydrogenasecomplex;

PDK,pyruvatedehydrogenasekinase;PEP,

phosphoenolpyruvate;PFK,phosphofructokinase;PGAM,

phosphoglyceratemutase;PHGDH,phosphoglycerate

dehydrogenase;PKM2,pyruvatekinaseM2isoform;R5P,

ribose-5-phosphate;SDH,succinatedehydrogenase;TCA,

tricarboxylicacid;THF,tetrahydrofolate;TYMS,

thymidylatesynthase.

Table1:Potentialtherapeuticcompoundstargeting

metabolicenzymesoftumors

Glucosemetabolism.Inthe1920s,theGerman

biochemistOttoWarburgshowedthattumorcellsdiffer

fromnormalcellsintheirutilizationofglucose,an

observationthatisprobablythefirstevidenceofmetabolic

alterationsincancer3.Whereasnormalcellsdirectglucose

tomitochondrialoxidativephosphorylationtogenerate

ATPwhenoxygenisabundant,tumorcellsgenerally

exhibitgreaterglucoseuptake,glycolyticfluxandlactate

secretion,regardlessofoxygenavailability.This

phenomenon,calledaerobicglycolysis,formedthebasis

forthedevelopmentof18F-deoxyglucosepositronemission

tomographytoimagetumordevelopmentandregression

inpatients.Althoughtheroleandregulationofaerobic

glycolysisincancercellsarenotfullyunderstood,ithas

beensuggestedthatthisprocesssuppliesformsof

energeticandanabolicsubstratesthatfavormassive

macromolecularsynthesis.

UnderstandingoftheWarburgeffectspurredeffortsto

preferentiallyeliminatecancercellsbytargetingglucose

metabolism.Asglucoseenterscellsviaspecific

transporters,astraightforwardstrategywouldbetoblock

glucoseuptakebyinhibitingglucosetransporters.Atleast

onesmall-moleculeinhibitorofglucosetransporters

(silybin,alsoknownassilibinin)hasbeendeveloped,and

clinicaltrialsareongoingtotestitstoxicityandefficacy415.

However,asglucosetransportershaveseveralisoforms,

mostofwhicharehighlyexpressedincancercells,itwill

bechallengingtodevelopcompoundsthatinhibitall

isoformswithanacceptabletherapeuticwindow.

Analternativestrategyforinhibitingglucosemetabolism

reliesontheglucoseanalog2-deoxy-D-glucose.This

moleculeenterscellsviaglucosetransportersbutis

trappedas2-deoxyglucose-6-phosphateafter

phosphorylationbyhexokinaseandcannotbefurther

metabolized.Accumulationof

2-deoxyglucose-6-phosphateisthoughttoinhibitglycolytic

enzymesandglucosecatabolism.Although

2-deoxy-D-glucosehasbeeneffectiveinpreclinicaland

clinicalstudies,thistreatmenthasnotbeenfullyexplored

becauseofconcernsrelatedtopotentialtoxicityathigh

doses6.

Morerecently,ithasbeendiscoveredthatcancercells

seemtopreferentiallydependonspecificisoformsof

glycolyticenzymes6,promptingasearchfor

isoform-specificinhibitors,whichshouldincreasedrug

specificitytocancercellsandavoidtoxicitytonormalcells.

Keymetabolicpathwaysandenzymesbeinginvestigated

aspotentialtargetsincludethemuscle-specificisoformof

hexokinase2andphosphofructokinase2(Fig.1).

Tumor-specificexpressionoftheseisoformshasledto

identificationofisoform-specificinhibitorsthathave

substantiallysuppressedtumorgrowthinpreclinical

studies7,8andarebeingtestedclinically(Table1).

Arate-limitingstepinglycolysisisconversionof

phosphoenolpyruvatetopyruvateandgenerationofATP

bypyruvatekinase.Asplicingvariantofpyruvatekinase

foundinmuscle,PKM2,ispredominantlyexpressedin

embryoniccellsandtumorcells.Theglycolytic

intermediatefructose-1,6-bisphosphatebindstoPKM2and

convertsittoanenzymaticallyactiveform,whereasthe

tyrosinekinasesignalingpathwayinactivatesPKM2

throughthereleaseoffructose-1,6-bisphosphatefrom

PKM2(ref.9).Becausemostcancercellsexhibit

constitutivelyactivetyrosinekinasesignaling,theirlevelof

PKM2enzymeactivityislower.Thishasbeenproposedto

beimportantforcellproliferation,aslowPKM2activity

leadstoaccumulationofglycolyticintermediates,manyof

whicheitherareprecursorsofmacromolecularsynthesis,

suchasnucleotidesandaminoacids,orcanbeusedfor

generationofNADPH10.Laterstudieshavesuggestedthat

phosphoenolpyruvateactsasaphosphatedonorforthe

upstreamenzymephosphoglyceratemutasein

PKM2-expressingcells,whichfurtherpromotesglycolysis

andbiosyntheticprocesses11.Indeed,PKM2cellsmaintain

higherfluxtotheserinesyntheticpathway12.The

regulationofPKM2-mediatedserinesynthesismaybe

importantfortumorgrowthandmammaliantargetof

rapamycincomplex1(mTORCI)signaling(seebelow)12,13

Onthebasisofthesedata,avarietyofPKM2-specific

small-moleculeinhibitorsoractivatorshavebeen

investigatedfortheirtherapeuticpotentialinpreclinical

studies14,15,16,andsomearebeingtestedinclinicaltrials6

(Table1).

Generationanddisposaloflactate,theendproductof

glycolysis,hasbeenextensivelystudiedinconnectionwith

cancertherapy.Becauselactatedehydrogenaseconverts

pyruvatetolactatewhileoxidizingNADHtoNAD+to

supportcontinuedglycolyticflux,thisenzymehasbeen

consideredoneofthecriticaltargetsforsuppressing

elevatedglycolysis.LactatedehydrogenaseA(LDHA),an

isoformoflactatedehydrogenase,ispreferentially

expressedinmanycancersandisatranscriptionaltarget

ofMYCandHIF-1a.RNAinterference(RNAi)knockdown

experimentsinvariouscancercellshaveshownthatLDHA

hasanimportantroleintumorgrowth17,18119.Anatural

phenolderivative,gossypol,anditsderivativescompete

withNADHbindingtolactatedehydrogenaseandinhibit

lactatedehydrogenaseactivity.Despiteitslackof

specificity,gossypolisbeingtestedinclinicaltrialsfor

variouscancers20.Thegossypolanalogshavebeen

screenedforsmall-moleculeinhibitorsspecificforLDHA.

Amongthem,

3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthale

ne-1-carboxylicacid(FX11)effectivelyinhibitscancercell

growthinvitroandinvivobyincreasingoxidativestress21.

Morerecently,A/-hydroxyindole-basedcompoundshave

beenidentifiedasisoform-specificinhibitorsofLDHAthat

competewithitssubstratespyruvateandthecofactor

NADH22.

Pyruvatedehydrogenasekinase1(PDK1)isanother

transcriptionaltargetofMYCandHIF-1athatseemsto

haveacriticalroleinmanycancers.Itinactivatespyruvate

dehydrogenase,whichconvertspyruvatetoacetyl-CoAin

themitochondria.Asaresult,pyruvateisshuttledfromthe

tricarboxylicacidcycletoproducelactate.Accordingly,

specificinhibitorsofPDK1canblockaerobicglycolysis

andincreasetherateofoxidativephosphorylation.For

example,dichloroacetate,whichiswidelyusedforthe

treatmentoflacticacidosis,hasshownsuppressionof

tumorgrowthinpre-clinicalcancermodelsaswellasin

clinicaltrialsofprimaryglioblastoma23,24125(Table1),

althoughitsmechanismofactionrequiresfurther

investigationasitseemsthatthispyruvatemimetic

compoundlacksisoformselectivityamongPDKs.

Lactateaccumulatedinsidecancercellsisexported

throughthemonocarboxylatetransporterfamily.Impaired

functionofmonocarboxylatetransporterscauses

substantialdefectsincancercellproliferationandtumor

growth,indicatingthatcancercellsdependonefficient

lactatesecretion26127.Moreover,secretedlactatecanbe

takenupbyanisoformofmonocarboxylatetransporter,

MCT1,andusedasafuelsourcetosupportproliferationof

neighboringcellsthatarerelativelyoxidative.This

suggeststhatinthesametumor,cancercellswithdiverse

metabolicprofilesexchangetheirmetabolitesforsurvival

andgrowthinasymbioticmanner.Severalcompounds

thatblockthefunctionofMCT1arebeingdevelopedas

potentialcancertherapeutics28,29,30(Table1).

CompoundTargetTumortype/cancercelltypesClinical

stages

Glucosemetabolism

2-DGGlucosetransporterProstatecancerPhase1

Silybin/silibininProstatecancer(terminated)

Phase1/2

2-DGHK2ProstatecancerPhase1

Lonidamine(terminated)

Phase1

(Europe)

TLN-232/CAP-23PKM2Metastaticrenalcellcarcinoma,Phase2

melanoma

Gossypol/AT-101LDHAMultiplecancersPhase1/2

Dichloroacetate(DCA)PDKBraincancerPhase1

Non-smallcelllungcancerPhase2

Headandneckcancer

AZD3965MCT1AdvancedsolidtumorsPhase1/2

Nucleicacidmetabolism

MethotrexateFolatecycle(DHFR)MultiplecancersRegistered

Pemetrexed

5-FluorouracilThymidinesynthesis(TYMS)MultiplecancersRegistered

CompoundTargetTumortype/cancercelltypesClinical

stages

HydroxyureaDeoxynucleotidesynthesisMultiplecancersRegistered

(Ribonucleotidereductase:RNR)

Gemcitabine(Gemzar),Nucleotideincorporation(DNAMultiplecancersRegistered

Fludarabine(Fludara)polymerase/RNR)

Aminoacidmetabolism

-AsparginaseAsparagineLeukemiaRegistered

ArgininedeaminaseArginineMultiplecancersPhase2

(ADI-PEGconjugated)

NADmetabolism

FK866/APO866NicotinamideCutaneousT-celllymphoma

CHS828/GMX1777phosphoribosyl-transferase(CTCL),B-cellchronic

lymphocyticleukemia(CLL),

melanoma

Metastaticmelanoma,solid

tumors,lymphomas

Manycompoundstargetingglycolyticenzymeshave

synergisticanticancereffectsincombinationwith

conventionalchemotherapyorradiotherapyandwith

pathway-targetedagents.Atpresent,somecombinations

withagentstargetingglucosemetabolismhaveshown

promiseinclinicaltrials,andvariousenzymesinvolvedin

thereactionsbranchingfromglucosemetabolismthatare

alteredincancercellsarealsobeingactively

investigated31(Fig.1).

Glutaminemetabolism.Althoughtheinitialstudiesof

cancercellmetabolismfocusedonglucose,itisnowclear

thatmetabolismofaminoacidsandfattyacidsisalso

reprogrammedtoprovidethebuildingblocksforcancer

cellgrowthandproliferation.Glutamineisthemost

abundantaminoacidinthebloodandamajorsourceof

nitrogenforthesynthesisofnucleotides,aminoacidsand

glutathione.Inhighlyproliferativecells,itservesasa

carbonsourcetoreplenishthetricarboxylicacidcycleto

supportcellbioenergeticsandanabolicreactions.Several

groupshaverecentlyproposedthatcancercellsgrownin

hypoxicconditionsincreasetheirdependenceon

glutaminemetabolism,asglutamine-derived

a-ketoglutaratecanundergoreductivecarboxylationto

producecitrateandlipids32,33134.Therefore,glutamine

metabolisminhypoxiccancercellsseemstobean

essentialpathwayandanattractivetherapeutictarget.

Afterbeingtakenupbycells,glutamineisconvertedto

glutamatebythemitochondrialenzymeglutaminase.

Glutamateissubsequentlyconvertedtoa-ketoglutarateby

eitherglutamatedehydrogenaseoraminotransferases.As

anintermediateofthetricarboxylicacidcycle,

a-ketoglutaratecanprovidecarbonbackbonesforcellular

anabolicreactions35(Fig.1).Althoughtheoncogenic

signalingpathwaysinvolvedinrewiringglutamine

metabolismarenotfullyunderstood,multiplereportshave

suggestedthattheoncogenictranscriptionfactorMYC

controlsglutaminecatabolismbyregulatingexpressionof

glutaminetransportersandenzymesinvolvedin

glutaminolysis35136.Inaddition,MYC-overexpressingcells

aremarkedlysensitivetoglutaminedeprivation,

suggestingthattheyareaddictedtoglutamine35137.

Recently,Myc-inducedtumorigenesishasbeenassociated

withglutaminemetabolism,asshownbythecorrelation

betweenMycexpressionandthemetabolicprofilesof

mousetumors38.

Glutaminasehastwoisoforms.Glutaminase1(GLS1)is

thoughttobetheprimaryenzymeinvolvedin

glutaminolysis35,36,whereasGLS2seemstohavea

differentfunctionrelatedtotheantioxidantsystem39.

Recently,GLS1wasidentifiedusingunbiased

high-throughputscreeningasatargetofasmall-molecule

inhibitorthatblocksRho-GTPase-driventransformation40.

Moreover,anisoformofGLS1,glutaminaseC,is

consideredanimportanttargetowingtoitselevatedlevel

intumorsshowingglutamineaddiction.Recent

structure-basedstudiessuggestthatitsactivityis

regulatedbyinorganicphosphate,whichishighlyenriched

inmitochondriaunderhypoxia41,42.

Severalglutamineanalogs,includingthecompound

6-diazo-5-oxo-L-norleucine,havebeentestedas

therapeuticagentspreclinicallyandclinically.Although

treatmentwiththeseagentshasledtosubstantial

inhibitionofcancercellgrowthinvitroandinmouse

xenografts,thecompoundsarehighlytoxicowingtotheir

lackofspecificity43.Recently,aGLS1-specificinhibitor,

bis-2-(5-phenylacetimido-1,2,4,thiadiazol-2-yl)ethylsulfide

(BPTES),wasidentified44andshowntosubstantially

inhibitcancercellgrowthinvitroandinmousetumor

models38145.Asaselectiveinhibitor,BPTESmayachievea

largertherapeuticwindowthanglutamineanalogsbecause

specificinhibitionofGLS1wouldsuppressatumorrelying

onglutaminolysiswithoutaffectingotherimportant

functionsofglutamineinnormaltissues.

Anotherglutaminolysisenzyme,glutamatedehydrogenase,

isimportantforglioblastomacellsurvivalunderconditions

inwhichglucosecatabolismisimpairedortheAKT

pathwayisinhibited46.Epigallocatechingallate,apotent

andspecificinhibitorofglutamatedehydrogenase,blocks

glutaminolysisandsensitizesglioblastomacellstoglucose

deprivation46,47.Asglutaminecansupportcancercell

survivalunderglucoselimitationandhypoxia,the

suppressionofglutaminecatabolismwouldbesynergistic

withinhibitionofgrowthsignalingpathwaysrelatedto

glucosecatabolism.

Serinesyntheticpathways.Glycolyticintermediates

derivedfromenhancedglycolysisincancercellscanbe

shuntedtogeneratenonessentialaminoacids,lipidsand

nucleotidesthatfacilitatecancercellgrowthand

proliferation.Forexample,cellsexpressingPKM2

accumulatetheglycolyticintermediate3-phosphoglycerate,

whichcanbeshuntedtotheserinesyntheticpathway.As

aresult,PKM2cells(thatis,cancercells)canmaintain

mTORCIactivityandproliferationinserine-depleted

medium,whereasPKM1cells(thatis,normalcells)

cannot12,13.Notably,therate-limitingenzymeinvolvedin

branchingglycolysistotheserinesyntheticpathways,

phosphoglyceratedehydrogenase,isamplifiedinasubset

ofmelanomaandestrogenreceptor-negativebreast

cancer48,49,suggestingthatgreaterfluxintotheserine

syntheticpathwayprovidesselectiveadvantagetotumor

cells.Overexpressionofthisgeneleadstocellular

transformation,andRNAisuppressionofPHGDHleadsto

inhibitionofcancercellproliferationandtransformation48,49

Thereforephosphoglyceratedehydrogenaseisan

attractivemetabolictargetforcancertherapeutics,

togetherwithotherenzymesinvolvedintheserine

syntheticpathway.

Serineisanimportantnonessentialaminoacidthatcanbe

usedforsynthesisofotheraminoacids,suchasglycine

andcysteine,andforgenerationofphospholipids.In

addition,whenserineismetabolizedtoglycine,

tetrahydrofolateisconvertedto

5,10-methylene-tetrahydrofolate,acriticalstepin

maintainingthefolatecyclefornucleotidesynthesis50(Fig.

1).Thedependenceofcancercellsonthefolatecyclehas

beendemonstratedbysuccessfuldevelopmentof

antifolatedrugs,oneoftheearliestchemotherapies

developedinthelastcenturyandwidelyusedintheclinic

totreatvarioustypesofcancer(Table1).Examples

include5-fluorouracil,whichinhibitsthymidinesynthesis,

andmethotrexate,whichblockspurinesynthesisby

inhibitingdihydrofolatereductase,whichconverts

dihydrofolatetotetrahydrofolate(Table1).

Autophagy

Autophagyisaself-degradationprocesswherebycytosolic

componentsandorganellesaresequesteredindouble

membrane-boundvesiclesanddeliveredtolysosomesfor

degradationandrecycling(Fig.2).

PI3K/AktEnergy

Nutrients

Rapamycin

analogs

I—□

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论