版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
PAGE
PAGE
1
PAGE
1
AerodynamicPerformancesofPropellerswithParametricConsiderationsontheOptimalDesign
S.D’Angelo,F.Berardi,E.Minisci
DepartmentofAeronauticalandSpaceEngineering
PolitecnicodiTorino,Turin-Italy
ABSTRACT
Inthispapertwonumericalproceduresarepresented:thefirstalgorithmallowsforthedeterminationofthegeometriccharacteristicsofthemaximumefficiencypropellerforagivenoperativeconditionandprofiledistributionalongtheblade;theoutputofthisnumericalprocedureisthechorddistributionandtwistangleoftheblade,togetherwithitsefficiencyanditstorqueandthrustcoefficientsfortheprescribedoperativecondition.Theaerodynamiccharacteristicsoftheoptimumpropellerwhenoperatinginaconditiondifferentfromthedesignoneareobtainedbyasecondalgorithmthatallowsfortheevaluationoftheefficiency,thethrustandtorquecoefficientsofapropellerofknowngeometry,whenthebladepitchandoperativeconditionarevaried.
Inthepapertheformulationusedforderivingthegeometryoftheoptimumpropelleranddeterminingitsperformanceswhenoperatingoff-designisdescribedindetail.Theresultsobtainedfromtheproposedpropellermodelhavebeenvalidatedbycomparisonwithexperimentaldata.
Nomenclature
b
nondimensionalbladesectionchord,b=l/R
c
soundspeed
cd
airfoildragcoefficient
cl
airfoilliftcoefficient
D
drag
E
aerodynamicefficiency
FA
totalaerodynamicforce
kP
Prandtlcorrectionfactor
K
Lagrangefactor(constant)
l
bladesectionchord
L
lift
M
enginetorque
Ma
freestreamMachnumber,Ma=V/c
Ma
localMachnumberatstation,Ma=VE/c
n
bladenumber
P
shaftpower
r
coordinatealongbladespan
R
propellerradius
Re
freestreamReynoldsnumber,Re=R*V*/
Re
localReynoldsnumberatstation,Re=l*VE*/
T
thrust
uD
inducedvelocityintheplaneofthepropeller
V
forwardspeed
VA
apparentvelocity,VA=(V2+(r)2)1/2
VE
actualvelocityofflowapproachingtheairfoil
nondimensionalactualvelocity,=VE/V
actualairfoilangleofattack
A
apparentairfoilangleofattack
Emax
angleofattackformaximumairfoilefficiency
i
inducedincidence
tw
twistangle
advanceratio
circulation
anglebetweenactualvelocityandpropellerplane
A
anglebetweenapparentvelocityandpropellerplane
efficiency
bladesectionpitchanglerelativetopropellerplane,()=tw()+0
0
collectivepitch,0=(=0.75)
airviscosity
nondimensionalcoordinatealongtheblade
airdensity
thrustcoefficient
torquecoefficient
angularcomponentofinducedvelocityinthepropellerplane
propellerangularvelocity
INTRODUCTION
Thenumericalprocedureproposedinthepresentpaperrequirestheaprioriknowledgeoftheaerodynamiccharacteristicsoftheairfoilsusedforthepropeller.Thiscanbeobtainedfromanexperimentalorcomputationaldata-base.
Itisnotalwayspossibletoobtaindetaileddata-basesthattakeintoconsiderationbothReynoldsandMachnumbereffectsinsuchawiderangeasthatencounteredatdifferentsectionsofanaeronauticalpropellerblade.LinearinterpolationandextrapolationbetweenexperimentaldataisusedinordertotakeintoconsiderationReynoldsnumbervariation,whilesemiempiricalcorrectionsareimplementedfortakingintoconsiderationcompressibilityeffects.
Thepropellerperformancedeterminedbyasimplifiednumericalprocedurecomparewellwiththeexperimentalresultsobtainedfromwind-tunneltests,asfarasthesectionat0.75ofbladespanisoperatingbelowstallangleandbelowdrag-divergenceMachnumberintheconsideredcondition.
Inwhatfollows,theclassicalaerodynamicpropellertheoryisdiscussed.Theformulationisorientedtowardstheimplementationofanumericalalgorithmforthedeterminationofthepropellerofmaximumefficiencyforagivenoperatingcondition.
Afteradetaileddiscussionoftheaerodynamictheoryofpropellers,theexperimentaldatabaseofairfoilcharacteristicsusedintheevaluationoftheoptimumbladeispresentedandacomparisonbetweenexperimentaldataandnumericalresultsforthegivenairfoilisdiscussedforvalidatingtheproposedalgorithm.
Aparametricstudyoftheoptimumbladeshapeatdifferentoperatingpointsispresented,soastoderivesomegeneralconsiderationsonthegeometryofthemaximumefficiencypropeller.Thesegeneralprinciplescanbeusefulindefiningproperinitialsolutionswhenmoresophisticatedoptimizationtoolsareused,withmeritfunctionsdifferentfromtheaerodynamicefficiencyoreveninthecaseofmulti-objectiveoptimization.
Thesameformulationusedfortheoptimizationroutineisimplementedinasecondnumericalalgorithmfortheevaluationoftheaerodynamiccharacteristicsofagivenpropellerinanyoperatingcondition,intermsofbladepitch,,andadvanceratio,.Thevaluesofthrustcoefficient,torquecoefficientandefficiencyareobtained,i.e.(,),(,),and(,).
Thisroutineisvalidatedcomparingitsresultswithavailableexperimentaldata.Theaccuracyofthenumericalpredictionseemstobesatisfactoryfromanengineeringstandpoint.Moreoverthecomputationaleffortrequiredbytheproposedalgorithmisverylimitedandthismakeitsuitableforitsimplementationindifferentoptimizationprocedures,singleobjectiveormulti-objective,deterministicornon-deterministic.
Fromaerodynamicpropellertheorytopropellerdesign.
Inthispaperwewillconsiderpropellergeneratingthrustinanaxialflow.Thebladehasvariablechordandtwistanglebutthefeatheringaxisisassumedrectilinearandlyinginaplaneduringtherevolution.
Theaerodynamictheoryadoptedisbasedonclassicalresults[1],[2],obtainedfromtheintegrationofvortextheory,wingtheoryandmomentumtheory.
Whenvortextheoryisadopted,propellerthrustandtorqueareexpressedasafunctionofcirculationalongtheblade.Thrustdistributionofminimumenergydissipationisobtainedbyavariationalapproach,adoptingPrandtlsimplifiedapproach[3].
Ifwingtheoryischosenforrepresentingtheaerodynamicbehavioroftheblade,thrustandtorqueareobtainedfromintegrationofelementaryliftanddragcontributionactingonaninfinitesimalbladeelement.Theinducedvelocityisevaluatedlocallycombiningresultsfromwingtheoryandmomentumconservationprinciple.
Vortextheory
Figure1representagenericbladeelement.ThemeaningofthesymbolsusedinthefollowingpagescanbefoundintheNomenclatureandisrepresentedinthesamefigure.
Theactualvelocityoftheflowpastagivensection,VE,isgivenbythevectorsumoftheapparentvelocity,VA,andtheinducedvelocityincrementattheconsideredsectionuD.VAisgivenbythesumofforwardspeedVandrotationalspeedofthesectionr.
Whenabladeelementdratpositionralongthebladespanisconsidered,thecirculation(r)canbeexpressedaccordingtoPrandtlapproximationas:
(1)
(2)
Thrust,torque,andpowerdissipatedbythepropellerareobtainedintegratingtheelementarycomponentsalongasinglebladeandmultiplyingtheresultbythenumberofblades.
Onagivenbladeelement,theaerodynamicforcedFA,thrustdT,torquedManddissipatedenergyperseconddPdaregivenrespectivelyby:
(3)
(4)
(5)
(6)
Calculusofvariationsallowsforthedeterminationoftheoptimalcirculationdistribution(r)thatminimizestheenergylossforagiventhrustT.
Letting-KVbetheLagrangefactor,thederivativeofthelinearcombinationofthrustandpowerlossisequatedtozero.Theresultingequationissolvedwithrespecttothecirculation,andtheconditionforminimumpowerlossisobtained:
(7)
Thecirculationdistribution,theactualvelocityandinducedvelocityforthesectionatcoordinaterfromthepropelleraxisarethenexpressedby:
(8)
(9)
(10)
Givenn,T,V,,andR,theLagrangemultipliercanbeobtainedintwodifferentways:
bynumericalsolutionoftheimplicitfunction:
(11)
where
(12)
byasimplifiedformulationobtainedneglectingK2withrespecttothefirstordertermasfarasK1,sothat:
(13)
where
(14)
Wingtheory
Asstatedintheintroduction,thewingtheoryallowsfortheevaluationofthrustandtorquegeneratedbyapropellerinagivenoperatingconditionbyintegratingtheelementaryaerodynamicactionsactingonaninfinitesimalportiondroftheblade.
Inthiscaseelementarythrustandtorqueareexpressedas:
(15)
(16)
Theactualvelocityandtheinducedincidenceareobtainedequatingtheexpressionforthepropellerthrustderivedfromvortextheoryandthatobtainedbywingtheory.Theresultingexpressionsare:
(17)
(18)
Non-dimensionalcoefficientandindependentparameters
Theadvanceratio,thethrustcoefficient,thetorquecoefficient,andthepropellerefficiencyaredefinedasfollows:
(19)
(20)
(21)
(22)
Thrustandtorquecoefficientscanbeexpressedasafunctionof6independentparameters,i.e.:
(23)
(24)
IfweapplythetheoremofBuckingam,weobtainthefollowingrelationsintermsofnon-dimensionalparameters:
(25)
(26)
whereMaistheMachnumberoftheundisturbedflowupstreamthepropeller,whileReistheReynoldsnumber,thereferencelengthbeingthepropellerradiusR.
WewillassumethattheinfluenceofReandMaoneisdueonlytotheireffectontheaerodynamiccoefficientsclecdofeachbladesection,i.e.ontheaerodynamiccharacteristicsofeachairfoil.
Finallywewillintroducealsothefollowingnon-dimensionalquantities:
(27)
(28)
(29)
(30)
(31)
whereisanon-dimensionalcoordinatealongthebladeradius,bisthebladesectionnon-dimensionalchord,isthenon-dimensionalactualvelocitypasttheconsideredbladesection,ReandMaarethelocalReynoldsandMachnumber,respectively.
Aerodynamicdatabase
Theevaluationoftheaerodynamicperformanceofapropellerrequiresthedetailedknowledgeofcharacteristicoftheairfoilusedfortheblades.TheaerodynamicdatabaseshouldprovidethevaluesofairfoildragandliftcoefficientsasafunctionofangleofattackandReynoldsnumber.
Usuallydifferentairfoilsareusedalongtheblade,butaerodynamiccharacteristicsareavailableforonlyfewofthem.Inthiscaseitisassumedthatintermediatesectionsbetweenknownprofilesarecharacterizedbyan“intermediate”aerodynamicbehaviour,i.e.liftanddragcoefficientsareobtainedbyaproperlinearcombinationthatweightstheairfoilcharacteristicsasafunctionoftherelativedistancefromtheprofileswithknowncharacteristics.Ifxisalocalnondimensionalcoordinatebetweentheknownsections,liftanddragcoefficientfornon-compressibleflowwillbeexpressedas:
(32)
(33)
Inordertoobtainsignificantresultsfromtheinterpolation,itisnecessarytoconsidertheeffectsofReynoldsnumberontheaerodynamiccoefficients,asfarasRexexperiencesasignificantvariationwhendifferentsectionsareconsidered.
Compressibilitycorrection
Compressibilityeffectscanhaveasizeableinfluenceonthevaluesofliftanddragcoefficients.
ThelocalMachnumberalonganaeronauticalpropellerbladecanvaryinsuchawiderangethatthiseffectscannotbeneglectedwithoutanunacceptablelossofaccuracy.IfaerodynamicdataexhaustivelyincludecompressibilityeffectsitispossibletointerpolateaerodynamicdatawithrespecttoMachnumberinthesamewayasitisdoneforReynoldsnumber.WhentheavailabledataarelimitedtolowMachnumber,asemi-empiricalfactorisderivedsoastoprovidethenecessarycorrectionforclandcdduetocompressibilityeffectsfromtheirvaluesforthecaseofnoncompressibleflow
Thecorrectionfactorusedinthepresentpaperwasoriginallyderivedforsymmetricalairfoilswithrelativethicknesst=0.21,forMa<0,9and-25°25°,butitisreasonabletoextendtheuseofthiscorrectiontoairfoilswithmoderatecamberandhighervaluesofrelativethickness.
Thedeterminationofthecorrectionfactorisbasedon:
thedeterminationofthelocalcriticalMachnumber
thedeterminationofthelocaldrag-riseMachnumber
thecorrectionoftheaerodynamiccoefficients
ThecriticalMachnumberisrelatedtotheminimumpressurecoefficientactingontheairfoilinanon-compressibleflowby([4],[5]):
(34)
Reference6providesthevalueoftheminimumpressurecoefficientatzeroliftincidence,cpi,min0,forseveralairfoil.Fromthisdataitispossibletoexpresscpi,min0forthe4digitNACAprofilesasafunctionoftherelativethicknessasfollows:
(35)
Anotherrelationbetweenminimumpressurecoefficientandliftcoefficientinincompressibleflowandrelativethicknesst,isdiscussedinRef.7:
(36)
Theresultsobtainedfromthislatterapproachshowapooragreementwithexperimentaldata,asitisclearlyvisibleinFig.2.
Abetterrepresentationisobtainedbyaddingtocpi,min0acontributionproportionaltocli2/t,withacoefficientasmallerthanunity.Comparisonwiththesameexperimentaldataprovidedforaavalueof0.75,sothatwecanexpresscpi,minas:
(37)
ThevalueofthecriticalMachnumberisobtainedsolvingthefollowingequation:
(38)
InmostcasesMacrindicatesathresholdbeyondwhichcompressibilityeffectsonaerodynamicperformancecannolongerbeneglected,eveniftherearenoimmediateconsequences.ButwhentheratioMa/Macrisgreaterthanavaluebetween1.04and1.20,dragincreasesdramatically.
ThevalueofMaforwhichdcd/dMa=0.1isthedragriseMachnumber,MaDR,andindicatesalimitbeyondwhichairfoilaerodynamicperformancedegradesseriously.
FromtheexperimentaldatareportedinRef.[8]and[6],arelationbetweenMaDRandMacrisderived,wheretheliftcoefficientinincompressibleflowappearsasaparameter:
(39)
WhenMa<MaDR,theliftcoefficientincreaseswithMachnumber,forthesameincidence.
Theliftcoefficientincompressibleflow,clc,isobtainedaccordingtoKaplanrelation(thatisamodifiedversionofPrandtl-Glauertcorrectionfactor):
(40)
(41)
ForMa>MaDR,liftcoefficientstartstodecreasewithMachnumber,withaminimumforMa0.9.Inthiscasethecorrectionfactoris:
(42)
ThedragcoefficientcddoesnotdependonMachnumberbelowMaDR,but,forMa>MaDR,energylosscausedbytheshockwaveisresponsibleofasharpincreaseinaerodynamicdrag.Thedragcoefficientisevaluatedaddingtoitsvaluefornon-compressibleflowCdiacontributionduetowavedrag,accordingto[9],[10]:
(43)
Acomparisonbetweenexperimentaldata(inRef.[8])andresultsobtainedaccordingtothecorrectionsofnon-compressiblecoefficientsisreportedinFigs.3and4.Itisevidentthatwehavegoodagreementforvaluesoftheangleofattackbelowstall.Asafinalconsiderationonthiscorrectionprocedureforcompressibilityeffects,weunderlinethattheresultsareaccurateforsymmetricalprofiles,withthicknessratiolessthan0.15andforMachnumberbetween0.3and0.9,inthelinearrangeoftheliftcurve.Thesimplicityoftheprocedureallowsforareducedcomputationaleffort.
Characteristicsofann-bladespropellerofradiusR
Thefeatheringaxisoftheblade,representedbyanon-dimensionalcoordinateintheinterval[0,1],isdividedintomelements,thusdefiningm+1sections.Theactiveportionofthebladebeginsatminandnisthenumberofsectionswithmin.Ifnpsectionsairfoilsofknowncharacteristicsareused,thegenericairfoilatcoordinatealongthebladewillbeidentifiedbythedistancexfromtheclosestairfoiliponthehubsideandthedistance1-xfromtheclosestairfoilip+1onthetipside.
Ourproblemcanbestatedasfollows:evaluatethrust,torqueandefficiencyofapropellerwithnbladesofknowngeometry(radiusR,chorddistribution,twistangle),fromtheaerodynamiccharacteristicsoftheairfoilused,forgivenoperatingconditions(forwardspeed,V,angularvelocity,,altitudeandbladepitch,thelatterbeingdefinedasthepitchangleofthesectionat0.75·R).
Foranybladesectionthelocalaerodynamiccharacteristicsareevaluatedaccordingtowingtheory.Itisthusnecessarytocalculateactualvelocity,itsanglewithrespecttothepropellerdiskandtheaerodynamiccoefficientsofthesectionsasafunctionoftheinducedincidence.
Innon-dimensionaltermsthethrustandtorquecoefficientsandthepropellerefficiencyareevaluatedasafunctionofbladenumbern,b(),tw,airfoilcharacteristics,,Re,Ma,.
Thesoftwareinputisdividedintotwosetsofparameters,thefirstonefordescribingthepropelleroperatingpoint,thesecondforthepropelleraerodynamiccharacteristicsanddiscretizationparameters:
bladenumber,n
numberofdiscretizationintervals,n
numberofairfoilswithknownaerodynamiccharacteristics,np
aerodynamiccharacteristicsoftheknownairfoils
foreachvalueofj,j=1,2,…,n,thevaluesofb,tw,ip(indexoftheclosestknownairfoilonthehubside,i.e.airfoil1),ip+1(indexoftheclosestknownairfoilonthetipside,i.e.airfoil2),thevalueofx,non-dimensionaldistancefromairfoil1,i.e.x_=_(j–ip)/(ip+1–ip).
Foreverysectiontheevaluationoftheaerodynamiccoefficientsiscarriedoutaccordingtotheprocedureoutlinedinthepreviousparagraph.Giventhevaluesof,Re,Ma,,n,b,twandprofiledistributionalongtheblade,thevaluesof,,andiaredeterminedbyiterationfori.Startingfromtherelations:
(44)
(45)
(46)
(47)
(48)
thelocalaerodynamiccoefficientsareevaluated:
(49)
(50)
(51)
(52)
Onceconvergenceoniisreached,thelocalincrementsforthrustandtorquecoefficientsareexpressedasfollows:
(53)
(54)
Finallythevaluesofdanddareintegratedalongthebladespan,giving:
(55)
(56)
(57)
Comparisonwithexperimentaldata
AcomparisonbetweennumericalresultsandexperimentaldatareportedinRef.11ispresentedinFigs.5,6and7tovalidatetheproposedalgorithm.TheaerodynamiccharacteristicsoftheairfoilsoftheNACA44XXseriesusedforthepropelleranalyzedinRef.11wereobtainedfromRefs.12and6.
Thevaluesof,andarereportedinFigs.5,6and7,respectively,asafunctionoftheadvanceratio.
TheagreementbetweenourmethodandexperimentalresultsappearssatisfactorywhentherepresentativesectionlocalMachnumberisbelowMaDRandisangleofattackisbelowstall.Forhighervaluesoflocalvelocityorbladepitchangletheempiricalcorrectionsarenolongersufficientforobtaininganaccuraterepresentationofthecomplexphysicalphenomenaaroundaconsistentportionoftheblade.
Inparticular,theplotsshowanoveroptimisticpredictionofthepropellerperformanceforhighvaluesofthebladepitchangle.
Designofthemaximumefficiencypropeller
Inthisparagraphanumericalprocedureforthedeterminationoftwistangleandchorddistributionasafunctionofthedistancerfromthehubforann-bladepropellerofradiusRispresented.TheoptimumpropellerwillminimizestheenergylossforprovidingarequiredthrustT,giventheoperatingpointintermsofforwardspeed,propellerangularvelocityandaltitude.
Themaximumefficiencyofthepropellerwillbeobtainedifalltheairfoilsalongthebladespanareattheirmaximumefficiencyangleofattack.Foreachsection,theangleofattackformaximumefficiencyisdetermined,asafunctionoflocalReynoldsandMachnumber.Aniterativeprocedureisnecessaryfordeterminingthevalueoftheairfoilchordforagivensection.
Theresultingchordandtwistangledistributionsalongthebladewilldependon4independentparameters,thrustcoefficient,advanceratio,ReynoldsandMachnumbers,Re,Ma.Aparametricstudyoftheoptimumbladeshapeasafunctionoftheseparametersprovidesinterestingresults.
Thenumericalprocedurefordeterminingtheoptimumbladeshape,canbesummarizedasfollows.
Again,theinputdatacanbegroupedintothreesets,afirstonefortheoperatingpoint,,,ReandMa,andasecondone,withthepropellercharacteristicsalreadyassignedbythedesigner:
bladenumber,n,
airfoildistributionalongtheblade,
aerodynamiccharacteristicsoftheairfoilusedandthelastone,givenbythedisctretizationparameters.
Firstofall,theLagrangemultiplierKisdetermined:
foreverysectioniofthediscretizedblade,wherei=1,2,…,n,itis:
(58)
(59)
Theequation
(60)
isthensolvednumericallybyabisectionmethod.
Thedistributionoftwistangleandprofilechordalongthebladeisdeterminedasfollows.Theangleandthelocalvelocityaregivenby:
(61)
(62)
(63)
Foreachsectionithefollowingequationsareiterateduntilconvergenceisreached:
(64)
(65)
Thentheangleofattachofmaximumefficiencyisdetermined:
(66)
wherexand1-xaretherelativedistancefromthenearestknownairfoils(seepar.4)
(67)
Whenconvergenceisreached,theresultinglocalpitchangleisgivenby:
(68)
Thentheglobalcharacteristicsaredeterminedbynumericalintegrationof
(69)
(70)
where
(71)
(72)
Theresultingefficiencyis
(73)
Attheendoftheprocedureitisnecessarytocheckwhethertheassignedbladenumberniscompatiblewiththeprescribedoperatingpoint.Inparticular,ifbmax/R<0.15itisnecessarytoreducenforstructuralreasons,whileifbmax/R>0.24,increasingncanproducesignificantimprovementintermsofaerodynamicefficiency.
Parametricanalysisoftheoptimumblade
Thegeometryoftheoptimumbladedependsonthenon-dimensionalparameters,,ReandMa.Aparametricstudyispresented,limiting,forthesakeofsimplicity,theanalysistothestudyoftwo-bladedpropellerswithconstantairfoilNACA0012.Thecharacteristicsofthisairfoilareknownwithgreatdetailandthecompressibilitycorrectionisparticularlywellsuited.
Therangeofvariationoftheparametersrepresentingtheoperatingpointofthepropelleraredeterminedtakingintoconsideration20singleengineairplaneswithtwobladepropellers.
Theircharacteristicsintermsofcruisealtitudeandairspeed,thrust,diametera
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 伊拉克战争中美英联军的军交运输保障及启示
- 云服务提供商安全合规性-洞察分析
- 专题2.5 科学记数法与近似数【八大题型】(举一反三)(人教版2024)(解析版)
- 牙周植物菌与免疫调节-洞察分析
- 艺术教育对人格塑造的影响-洞察分析
- 添加剂在食品工业中的应用策略-洞察分析
- 源码克隆与相似性分析-洞察分析
- 药物经济学评价-第1篇-洞察分析
- 学习效果量化评估方法-洞察分析
- 网络棋牌游戏安全防护-洞察分析
- 2023-2024学年北京市东城区高一语文上学期期末统检试卷附答案解析
- 肿瘤学肿瘤发生发展和治疗的研究
- 2023医院内部审计工作计划范文
- 华为招聘与人员配置
- 微观经济学原理曼昆英文第七章
- 四川省南充市2023-2024学年八年级上学期期末英语试卷
- 《冲击地压及其防治》课件
- 实验室仪器设备等采购项目投标方案(技术方案)
- 2024年中国铁路南宁局集团招聘笔试参考题库含答案解析
- 郑州大学学生专业实习鉴定表
- 气管食管瘘护理查房
评论
0/150
提交评论