版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若均为任意实数,且,则的最小值为()A. B. C. D.2.若的展开式中的常数项为-12,则实数的值为()A.-2 B.-3 C.2 D.33.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是()A.甲 B.乙 C.丙 D.丁4.若函数的图象过点,则它的一条对称轴方程可能是()A. B. C. D.5.已知集合,,,则集合()A. B. C. D.6.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H7.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为88.已知f(x),g(x)都是偶函数,且在[0,+∞)上单调递增,设函数F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,则()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)9.执行下面的程序框图,如果输入,,则计算机输出的数是()A. B. C. D.10.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.11.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.12.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某中学举行了一次消防知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,记图中从左到右依次为第一、第二、第三、第四、第五组,已知第二组的频数是80,则成绩在区间的学生人数是__________.14.将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为__________.15.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.16.已知双曲线的一条渐近线经过点,则该双曲线的离心率为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.18.(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值.19.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.20.(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.21.(12分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.22.(10分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.2.C【解析】
先研究的展开式的通项,再分中,取和两种情况求解.【详解】因为的展开式的通项为,所以的展开式中的常数项为:,解得,故选:C.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.3.A【解析】
可采用假设法进行讨论推理,即可得到结论.【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以断定值班人是甲.故选:A.【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.4.B【解析】
把已知点坐标代入求出,然后验证各选项.【详解】由题意,,或,,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,,即是对称轴.故选:B.【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键.5.D【解析】
根据集合的混合运算,即可容易求得结果.【详解】,故可得.故选:D.【点睛】本题考查集合的混合运算,属基础题.6.C【解析】
由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.7.D【解析】
由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【点睛】样本的平均数是,方差为,则的平均数为,方差为.8.A【解析】试题分析:由题意得,F(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),∴F(-a)=F(a),综上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致1-a与1+a大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.9.B【解析】
先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【详解】本程序框图的功能是计算,中的最大公约数,所以,,,故当输入,,则计算机输出的数是57.故选:B.【点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.10.D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.11.B【解析】
由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.12.A【解析】
令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.30【解析】
根据频率直方图中数据先计算样本容量,再计算成绩在80~100分的频率,继而得解.【详解】根据直方图知第二组的频率是,则样本容量是,又成绩在80~100分的频率是,则成绩在区间的学生人数是.故答案为:30【点睛】本题考查了频率分布直方图的应用,考查了学生综合分析,数据处理,数形运算的能力,属于基础题.14.【解析】
根据图像的平移变换得到函数的解析式,再利用整体思想求函数的值域.【详解】函数的图像向右平移个单位得,,,.故答案为:.【点睛】本题考查三角函数图像的平移变换、值域的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意整体思想的运用.15.9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【详解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案为:.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.16.【解析】
根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.【详解】因为双曲线为,所以该双曲线的渐近线方程为.又因为其一条渐近线经过点,即,则,由此可得.故答案为:.【点睛】本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
(1)根据奇函数定义,可知;令则,结合奇函数定义即可求得时的解析式,进而得函数的解析式;(2)根据零点定义,可得,由函数图像分析可知曲线与直线在第三象限必1个交点,因而需在第一象限有2个交点,将与联立,由判别式及两根之和大于0,即可求得的取值范围.【详解】(1)因为函数为奇函数,且,故;当时,,,则;故.(2)令,解得,画出函数关系如下图所示,要使曲线与直线有3个交点,则2个交点在第一象限,1个交点在第三象限,联立,化简可得,令,即,解得,所以实数的取值范围为.【点睛】本题考查了根据函数奇偶性求解析式,分段函数图像画法,由函数零点个数求参数的取值范围应用,数形结合的应用,属于中档题.18.(Ⅰ)曲线是焦点在轴上的椭圆;(Ⅱ).【解析】试题分析:(1)由题易知,直线的参数方程为,(为参数),;曲线的直角坐标方程为,椭圆;(2)将直线代入椭圆得到,所以,解得.试题解析:(Ⅰ)直线的参数方程为.曲线的直角坐标方程为,即,所以曲线是焦点在轴上的椭圆.(Ⅱ)将的参数方程代入曲线的直角坐标方程为得,,得,,19.(1);(2)见解析【解析】
(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,,,可得,,,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,,即可得证;法二:设,,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,,化简,即可得证.【详解】(1)抛物线C的焦点坐标为,且该点在直线上,所以,解得,故所求抛物线C的方程为(2)法一:由点F在线段上,可设直线,的方程分别为和且,,,则,,,.∴直线的方程为,即.又点在线段上,∴.∵P是的中点,∴∴,.由于,不重合,所以法二:设,,则当直线的斜率为0时,不符合题意,故可设直线的方程为联立直线和抛物线的方程,得又,为该方程两根,所以,,,.,由于,不重合,所以【点睛】本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.20.(1)或;(2)【解析】
(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当时,原不等式可化为.①当时,则,所以;②当时,则,所以;⑧当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.【点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.21.(1)的极坐标方程为,普通方程为;(2)【解析】
(1)根据三角函数恒等变换可得,,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可求得的范围;法二:设直线的参数方程为(为参数,为直线的倾斜角)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《软件工程》2022-2023学年期末试卷
- 淮阴师范学院《朗诵艺术》2023-2024学年第一学期期末试卷
- 妈妈宝贝课件教学课件
- 叶子课件简单教学课件
- 淮阴师范学院《草书技法(2)》2022-2023学年第一学期期末试卷
- DB2305-T 022-2024玉米茬保护性耕作整地技术规范
- 焙烤食品制造中的品牌建设与形象推广考核试卷
- 安全生产标准化启动课件考核试卷
- 汽车电子控制单元设计与实现考核试卷
- 托儿所服务的类型和特点考核试卷
- 食源性疾病培训内容知识
- 物业专业顾问合同模板
- 教科版六年级科学上册期中测试卷
- 项目管理与风险管理考核试卷
- 民间乐器培训活动方案
- 2024秋期国家开放大学本科《纳税筹划》一平台在线形考(形考任务一至五)试题及答案
- 2024年高级客房服务员职业鉴定理论考试题库及答案
- 2024年中级经济师(金融)《专业知识与实务》考前必刷必练题库500题(含真题、必会题)
- 互联网营销师教学计划和大纲
- Linux系统及应用学习通超星期末考试答案章节答案2024年
- 2024年度假区(阳澄湖镇)国(集体)公司公开招聘工作人员高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论