新高考数学一轮复习精讲精练8.8 对数运算及对数函数(基础版)(解析版)_第1页
新高考数学一轮复习精讲精练8.8 对数运算及对数函数(基础版)(解析版)_第2页
新高考数学一轮复习精讲精练8.8 对数运算及对数函数(基础版)(解析版)_第3页
新高考数学一轮复习精讲精练8.8 对数运算及对数函数(基础版)(解析版)_第4页
新高考数学一轮复习精讲精练8.8 对数运算及对数函数(基础版)(解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.8对数运算及对数函数(精讲)(基础版)思维导图思维导图考点呈现考点呈现例题剖析例题剖析考点一对数的运算【例1】(2022太原)计算下列各式的值:(1)SKIPIF1<0;(2)SKIPIF1<0.(3)SKIPIF1<0;(4)SKIPIF1<0.【答案】(1)1(2)2(3)-3(4)SKIPIF1<0【解析】(1)解:原式=SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)解:原式=SKIPIF1<0=SKIPIF1<0=2.(3)解:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(4)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【一隅三反】(2022广东湛江)计算下列各式:(1)SKIPIF1<0(2)SKIPIF1<0;(3)SKIPIF1<0.(4)SKIPIF1<0.(5)log6(log264)+SKIPIF1<0.(6)SKIPIF1<0【答案】(1)2(2)−32(3)3【解析】(1)SKIPIF1<0SKIPIF1<0(2)解:原式SKIPIF1<0.(3)解:原式SKIPIF1<0(4)原式=SKIPIF1<0SKIPIF1<0SKIPIF1<0.=10(5)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(6)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0考点二对数函数的三要素【例2-1】(2022太原)函数SKIPIF1<0的定义域是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】要使函数有意义,则x−1>0log2(x−1)≥0,解得SKIPIF1<0,∴函数SKIPIF1<0的定义域是SKIPIF1<0,故答案为:D【例2-2】(2022河南)函数f(x)=SKIPIF1<0SKIPIF1<0的最大值为.【答案】0【解析】令SKIPIF1<0,对称轴为SKIPIF1<0,SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0函数SKIPIF1<0的最大值为:SKIPIF1<0.故答案为:0.【例2-3】(2022清远期末)若函数SKIPIF1<0的值域为SKIPIF1<0,则实数SKIPIF1<0的取值范围是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由题可知,函数SKIPIF1<0的值域包含SKIPIF1<0,当SKIPIF1<0时,符合题意;当SKIPIF1<0时,则SKIPIF1<0,解得SKIPIF1<0;当SKIPIF1<0时,显然不符合题意,故实数SKIPIF1<0的取值范围是SKIPIF1<0.故答案为:A.【一隅三反】1.(2022·重庆模拟)函数SKIPIF1<0定义域为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因为SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以函数的定义域为SKIPIF1<0故答案为:C2.(2022太原)函数f(x)=SKIPIF1<0-log2(x+2)在区间[-1,1]上的最大值为.【答案】3【解析】SKIPIF1<0与y=-log2(x+2)都是[-1,1]上的减函数,所以函数f(x)=SKIPIF1<0-log2(x+2)在区间[-1,1]上的减函数,∴最大值为:f(-1)=3故答案为3.3.(2022云龙)已知函数y=lg(ax2﹣2x+2)的值域为R,则实数a的取值范围为.【答案】(0,SKIPIF1<0]【解析】当a=0时不符合条件,故a=0不可取;当a>0时,△=4﹣8a≥0,解得a≤SKIPIF1<0,故0<a≤SKIPIF1<0,故答案为:(0,SKIPIF1<0].4.(2022阳江)函数SKIPIF1<0的值域为R,则SKIPIF1<0的取值范围是.【答案】SKIPIF1<0【解析】∵函数SKIPIF1<0的值域为R,SKIPIF1<0能够取到大于SKIPIF1<0的所有数,则SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,∴实数SKIPIF1<0的取值范围是SKIPIF1<0.故答案为:SKIPIF1<0.5.(2022深圳期末)已知函数f(x)=ln(x2+1),g(x)=4(m-1)sin(2x+SKIPIF1<0)-m2,若x1SKIPIF1<0∈[-1,3],SKIPIF1<0x2∈[0,SKIPIF1<0],f(x1)≥g(x2),则m的取值范围是【答案】(-∞,-1-SKIPIF1<0]U[-1+SKIPIF1<0,+∞)【解析】记f(x)在区间[-1,3]上的最小值为[f(x)]min,g(x)在区间[0,SKIPIF1<0]的最大值为[()]max,由题意可知[f(x)]min≥[g(x)]max由SKIPIF1<0+1∈[1,10],可得(f[(x)]min=0,由2x2+SKIPIF1<0∈(SKIPIF1<0,SKIPIF1<0)可得sin(2x2+SKIPIF1<0)∈[-SKIPIF1<0,1]由g(x)max≤0,得−12×4(m−1)−m2≤04(m−1)−m2≤0解之,得x≤-1-SKIPIF1<0或x≥-1+所以,m的取值范围是(-∞,-1-SKIPIF1<0]U[-1+SKIPIF1<0,+∞).考点三对数函数的性质【例3-1】(2022高二下·东城期末)若函数SKIPIF1<0的图象过点SKIPIF1<0,则SKIPIF1<0()A.3 B.1 C.-1 D.-3【答案】A【解析】由已知得SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,故答案为:A.【例3-2】(2022双鸭山期末)“SKIPIF1<0”是“函数SKIPIF1<0是在SKIPIF1<0上的单调函数”的()A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件【答案】C【解析】依题意,函数f(x)是在(-2,+∞)上的单调函数,由于y=log2(x+2)+b在(-2,b]上递增,所以f(x)在(-2,+∞)上递增,所以b>0且1+b≤2,即0<b≤1,所以“b≤1”是“函数SKIPIF1<0是在(-2,+∞)上的单调函数”的必要不充分条件.故选:C【例3-3】(2022沧州期末)已知SKIPIF1<0,则SKIPIF1<0的大小关系为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】易知SKIPIF1<0,又SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;又SKIPIF1<0,所以SKIPIF1<0.故答案为:B.【例3-4】(2022·中卫模拟)设函数f(x)=log2x,x>0log12(−x),x<0若A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】当SKIPIF1<0时,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,综上可知:SKIPIF1<0或SKIPIF1<0。故答案为:C【一隅三反】1.(2022舟山期末)已知函数SKIPIF1<0且SKIPIF1<0,则该函数图象恒过定点()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因为函数SKIPIF1<0经过定点SKIPIF1<0所以函数SKIPIF1<0且SKIPIF1<0的图象经过定点SKIPIF1<0.故答案为:B2.(2022怀仁期末)已知SKIPIF1<0在SKIPIF1<0上是减函数,则实数a的取值范围是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因为SKIPIF1<0,所以SKIPIF1<0为减函数,而当SKIPIF1<0时,SKIPIF1<0是增函数,所以SKIPIF1<0是减函数,于是SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0.故答案为:B3.(2022杨浦期末)若log12(4−x2)>A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由题意得:4−x2<2x+12x+1>04−x24.(202延庆期末)已知SKIPIF1<0,设SKIPIF1<0,则下列结论正确的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由题意,可得SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故答案为:A.考点四反函数及应用【例4-1】(2022·徐汇模拟)函数SKIPIF1<0的反函数为SKIPIF1<0,则SKIPIF1<0.【答案】4【解析】设SKIPIF1<0,则点SKIPIF1<0在函数SKIPIF1<0的图象上,所以,SKIPIF1<0,解得SKIPIF1<0,因此,SKIPIF1<0.故答案为:4.【例4-2】(2022·杨浦二模)函数SKIPIF1<0的反函数为.【答案】SKIPIF1<0【解析】由SKIPIF1<0解得SKIPIF1<0,即SKIPIF1<0,把SKIPIF1<0与SKIPIF1<0互换可得:SKIPIF1<0.SKIPIF1<0的反函数为SKIPIF1<0.故答案为:SKIPIF1<0.【一隅三反】1.(2022高三上·江阳期末)若函数SKIPIF1<0与SKIPIF1<0互为反函数,则SKIPIF1<0的单调递减区间是.【答案】(-∞,0)【解析】因为SKIPIF1<0与SKIPIF1<0互为反函数,所以SKIPIF1<0在定义域SKIPIF1<0上为增函数,又SKIPIF1<0,在SKIPIF1<0上递减,SKIPIF1<0上递增,综上,SKIPIF1<0在SKIPIF1<0上为减函数。故答案为:(-∞,0)。2.(2021兰州期末)若函数y=SKIPIF1<0是函数SKIPIF1<0的反函数,则SKIPIF1<0【答案】0【解析】SKIPIF1<0的反函数为SKIPIF1<0,则SKIPIF1<0,则SKIPIF1<0,则SKIPIF1<0.故答案为:0

3(2022·青浦模拟)已知SKIPIF1<0的图象经过点SKIPIF1<0,SKIPIF1<0的反函数为SKIPIF1<0,则SKIPIF1<0的图象必经过点.【答案】SKIPIF1<0【解析】由题意可得SKIPIF1<0,则SKIPIF1<0,即SKIPIF1<0,故函数SKIPIF1<0的图象必过点SKIPIF1<0。故答案为:SKIPIF1<0。4.(2022高三上·杨浦模拟)已知函数SKIPIF1<0的反函数为SKIPIF1<0,则SKIPIF1<0.【答案】1【解析】由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0.故答案为:1.5(2021高三上·杨浦期中)若函数SKIPIF1<0的反函数为SKIPIF1<0,则函数SKIPIF1<0的零点为.【答案】1【解析】由题意得:SKIPIF1<0,若函数SKIPIF1<0的反函数为SKIPIF1<0,则SKIPIF1<0,则函数SKIPIF1<0的零点为1故答案为:16.(2021·黄浦模拟)设f﹣1(x)为函数f(x)=log2(4x﹣1)的反函数,则当f(x)=2f﹣1(x)时,x的值为.【答案】1【解析】f﹣1(x)为函数f(x)=log2(4x﹣1)的反函数,设y=f(x)=2f﹣1(x),函数过(x,y),反函数过(x,SKIPIF1<0),所以f(x)同时过(x,y),(SKIPIF1<0,x),代入SKIPIF1<0,得SKIPIF1<0,所以x=1故答案为:18.8对数运算及对数函数(精练)(基础版)题组一题组一对数的运算1.(2022镇江月考)计算:(1)SKIPIF1<0.(2)已知SKIPIF1<0,SKIPIF1<0,求实数SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)1【解析】(1)原式SKIPIF1<0,SKIPIF1<0.(2)因为SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或-2(舍),所以SKIPIF1<0.2.(2022上海月考)已知SKIPIF1<0,求SKIPIF1<0的值.【答案】9【解析】因为SKIPIF1<0,所以SKIPIF1<0,化简得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<03(2022莲湖期中)(1)计算SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的值.【答案】见解析【解析】(1)由题意,SKIPIF1<0;(2)因为SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.4.(2021海安月考)计算:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)2(2)22【解析】(1)解:原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)解:原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.5.(2022高一上·中山月考)求值或化简:(1)SKIPIF1<0;(2)SKIPIF1<0.(3)SKIPIF1<0.(4)SKIPIF1<0(5)SKIPIF1<0.(6)SKIPIF1<0.【答案】见解析【解析】(1)SKIPIF1<0(2)SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0(3)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0=2(4)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(5)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0.(6)(方法一)原式SKIPIF1<0SKIPIF1<0.(方法二)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0=13题组二题组二对数函数的三要素1.(2022·重庆模拟)函数SKIPIF1<0定义域为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因为SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以函数的定义域为SKIPIF1<0故答案为:C2.(2022·东莞月考)函数SKIPIF1<0的定义域为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】依题意,SKIPIF1<0,所以SKIPIF1<0的定义域为SKIPIF1<0.故答案为:D3.(2022河南)函数f(x)=SKIPIF1<0的定义域为()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】函数SKIPIF1<0中,令SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以函数SKIPIF1<0的定义域为SKIPIF1<0.故答案为:A.4.(2022开封期中)已知函数SKIPIF1<0且SKIPIF1<0在区间SKIPIF1<0上的最大值与最小值的差为1,则实数SKIPIF1<0的值为()A.2 B.4 C.SKIPIF1<0或4 D.SKIPIF1<0或2【答案】C【解析】令SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,函数可化为SKIPIF1<0,SKIPIF1<0,

①当SKIPIF1<0时,函数SKIPIF1<0在SKIPIF1<0上单调递增,

其最大值与最小值的差为SKIPIF1<0,解得SKIPIF1<0;

②当SKIPIF1<0时,函数SKIPIF1<0在SKIPIF1<0上单调递减,

其最大值与最小值的差为SKIPIF1<0,解得SKIPIF1<0,所以实数SKIPIF1<0的值为4或SKIPIF1<0,故答案为:C.5.(2022浦城)已知函数y=log2(x2-2kx+k)的值域为R,则k的取值范围是()A.0<k<1 B.0≤k<1 C.k≤0或k≥1 D.k=0或k≥1【答案】C【解析】因为函数y=log2(x2-2kx+k)的值域为R,所以SKIPIF1<0,解不等式得k≤0或k≥1。故答案为:C题组三题组三对数函数的性质1.(2022高三上·西宁期末)已知SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)恒过定点SKIPIF1<0,且点SKIPIF1<0在直线SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)上,则SKIPIF1<0的最小值为()A.SKIPIF1<0 B.8 C.SKIPIF1<0 D.4【答案】C【解析】当x=2时,loga(x−1)+1=1恒成立,故f(x)=loga(x−1)+1(a>0且a≠1)恒过定点M(2,1),∵点M在直线SKIPIF1<0(m>0,n>0)上,故SKIPIF1<0,则:SKIPIF1<0,当且仅当SKIPIF1<0时等号成立.即m+n的最小值为SKIPIF1<0.故答案为:C.2.(2020·新课标Ⅱ·理)设函数SKIPIF1<0,则f(x)()A.是偶函数,且在SKIPIF1<0单调递增B.是奇函数,且在SKIPIF1<0单调递减C.是偶函数,且在SKIPIF1<0单调递增D.是奇函数,且在SKIPIF1<0单调递减【答案】D【解析】由SKIPIF1<0得SKIPIF1<0定义域为SKIPIF1<0,关于坐标原点对称,又SKIPIF1<0,SKIPIF1<0为定义域上的奇函数,可排除AC;当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上单调递增,SKIPIF1<0在SKIPIF1<0上单调递减,SKIPIF1<0在SKIPIF1<0上单调递增,排除B;当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上单调递减,SKIPIF1<0在定义域内单调递增,根据复合函数单调性可知:SKIPIF1<0在SKIPIF1<0上单调递减,D符合题意.故答案为:D.3(2022集宁月考)函数y=logSKIPIF1<0(5+4x-x2)的单调递增区间为()A.(2,5) B.(-1,2) C.(-∞,2) D.(2,+∞)【答案】A【解析】SKIPIF1<0,解得SKIPIF1<0内层函数SKIPIF1<0在SKIPIF1<0上单调递增,在SKIPIF1<0上单调递减。外层函数SKIPIF1<0单调递减所以SKIPIF1<0的单调递增区间SKIPIF1<0故答案为:A4.(2022长治期中)函数SKIPIF1<0的增区间为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由题意,可知SKIPIF1<0为定义域上的单调递增函数,又由函数SKIPIF1<0在SKIPIF1<0单调递减,在SKIPIF1<0上单调递增,根据复合函数的单调性判定“同增异减”,可得函数SKIPIF1<0的单调递增区间为SKIPIF1<0,故答案为:B.5(2022广东).已知SKIPIF1<0是(−∞,+∞)上的减函数,那么a的取值范围是()A.(0,1) B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由题意得SKIPIF1<0,∴SKIPIF1<0.故答案为:C.

6.(2022九江开学考)函数y=SKIPIF1<0sin(SKIPIF1<0﹣2x)的一个单调递减区间是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】∵y=log0.5t为减函数,y=log0.5sin(SKIPIF1<0﹣2x)单调减区间即为t=sin(SKIPIF1<0﹣2x)=﹣sin(2x﹣SKIPIF1<0)的单调增区间由于真数必须为正,故令SKIPIF1<0k∈Z解得SKIPIF1<0当k=﹣1时,有SKIPIF1<0故选A.7.(2022绍兴)若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0,SKIPIF1<0)内恒有f(x)>0,则f(x)的单调递增区间是()A.(﹣∞,﹣SKIPIF1<0) B.SKIPIF1<0C.SKIPIF1<0 D.(0,+∞)【答案】C【解析】当x∈(0,SKIPIF1<0)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=loga(2x2+x)(a>0,a≠1)由f(x)=logat和t=2x2+x复合而成,0<a<1时,f(x)=logat在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为SKIPIF1<0,∴f(x)的单调增区间为SKIPIF1<0,故选C.8.(2022连城期中)函数f(x)=x3+bx2+cx+d图象如图,则函数SKIPIF1<0的单调递减区间为()A.(﹣∞,﹣2) B.[3,+∞)C.[﹣2,3] D.[SKIPIF1<0)【答案】A【解析】∵f(x)=x3+bx2+cx+d∴f'(x)=3x2+2bx+c由函数f(x)的图象知,f'(﹣2)=0,f'(3)=0∴b=﹣SKIPIF1<0,c=﹣18∴SKIPIF1<0=log2(x2﹣x﹣6)的定义域为:(﹣∞,﹣2)∪(3,+∞)令z=x2﹣5x﹣6,在(﹣∞,﹣2)上递减,在(3,+∞)上递增,且y=log2z根据复合函数的单调性知,函数SKIPIF1<0的单调递减区间是(﹣∞,﹣2)故选A.9.(2022重庆)已知y=loga(2﹣ax)是[0,1]上的减函数,则a的取值范围为()A.(0,1) B.(1,2) C.(0,2) D.(2,+∞)【答案】B【解析】∵f(x)=loga(2﹣ax)在[0,1]上是x的减函数,∴f(0)>f(1),即loga2>loga(2﹣a).∴SKIPIF1<0,∴1<a<2.故答案为:B.10(2022保定期末)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因为SKIPIF1<0,所以函数SKIPIF1<0单调递减,所以SKIPIF1<0,即SKIPIF1<0;因为SKIPIF1<0,所以函数SKIPIF1<0单调递增,所以SKIPIF1<0,即SKIPIF1<0;因为SKIPIF1<0,所以函数SKIPIF1<0单调递减,所以SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,A,B,D不符合题意.故答案为:C.11.(2022咸宁期末)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因为SKIPIF1<0在SKIPIF1<0上单调递增,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又因为SKIPIF1<0,所以SKIPIF1<0.故答案为:C12.(2022湖北期末)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案为:D.13.(2022南充期末)函数SKIPIF1<0的图象恒过一定点是.【答案】(2,2)【解析】对数函数过定点SKIPIF1<0,令SKIPIF1<0,此时SKIPIF1<0,所以过定点(2,2)14.(2022河南月考)已知函数SKIPIF1<0,则关于x的不等式SKIPIF1<0的解集为.【答案】SKIPIF1<0【解析】由题意可知,定义域为R,设SKIPIF1<0,SKIPIF1<0,由函数SKIPIF1<0在R上的增函数,SKIPIF1<0在SKIPIF1<0为增函数,且SKIPIF1<0,所以SKIPIF1<0关于SKIPIF1<0对称,故SKIPIF1<0在SKIPIF1<0为增函数,且SKIPIF1<0在SKIPIF1<0处连续,SKIPIF1<0在SKIPIF1<0上的增函数,故函数SKIPIF1<0在R上递增,SKIPIF1<0,且SKIPIF1<0在R上递增,原不等式等价于SKIPIF1<0则SKIPIF1<0,解得SKIPIF1<0.故答案为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论