![山东省淄博市普通高中部分学校2024-2025学年高二数学下学期期末考试教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view2/M02/04/30/wKhkFma_ecqAcq9RAAGBPBKVG9g530.jpg)
![山东省淄博市普通高中部分学校2024-2025学年高二数学下学期期末考试教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view2/M02/04/30/wKhkFma_ecqAcq9RAAGBPBKVG9g5302.jpg)
![山东省淄博市普通高中部分学校2024-2025学年高二数学下学期期末考试教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view2/M02/04/30/wKhkFma_ecqAcq9RAAGBPBKVG9g5303.jpg)
![山东省淄博市普通高中部分学校2024-2025学年高二数学下学期期末考试教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view2/M02/04/30/wKhkFma_ecqAcq9RAAGBPBKVG9g5304.jpg)
![山东省淄博市普通高中部分学校2024-2025学年高二数学下学期期末考试教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view2/M02/04/30/wKhkFma_ecqAcq9RAAGBPBKVG9g5305.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE19-山东省淄博市一般中学部分学校2024-2025学年高二数学下学期期末考试教学质量检测试题(含解析)留意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数对应的点位于().A.第一象限 B.其次象限 C.第三象限 D.第四象限【答案】C【解析】【分析】依据复数除法运算法则,求出的实部和虚部,即可得出结论.【详解】,对应点的坐标为,位于第三象限.故选:C.【点睛】本题考查复数的代数运算以及复数的几何意义,属于基础题.2.若函数,则()A. B. C. D.【答案】B【解析】【分析】求出即可.【详解】因为,所以故选:B【点睛】本题考查的是导数的计算,属于基础题.3.某校高二期末考试学生的数学成果(满分150分)听从正态分布,且,则()A.0.4 B.0.3 C.0.2 D.0.1【答案】D【解析】【分析】本题依据题意干脆求在指定区间的概率即可.【详解】解:因为数学成果听从正态分布,且,所以故选:D.【点睛】本题考查利用正态分布求指定区间的概率,是基础题.4.绽开式的常数项为()A. B. C. D.【答案】D【解析】【分析】写出绽开式的通项,整理可知当时为常数项,代入通项求解结果.【详解】绽开式的通项公式为,当,即时,常数项为:,故答案选D.【点睛】本题考查二项式定理中求解指定项系数的问题,属于基础题.5.已知离散型随机变量的分布列为:123缺失数据则随机变量的期望为()A. B. C. D.【答案】C【解析】【分析】利用分布列的性质求出缺失数据,然后求解期望即可.【详解】解:由分布列的概率的和为1,可得:缺失数据:.所以随机变量的期望为:.故选:.【点睛】本题考查离散型随机变量的分布列的性质以及期望的求法,属于基础题.6.参与完某项活动的6名成员合影留念,前排和后排各3人,不同排法的种数为()A.360 B.720 C.2160 D.【答案】B【解析】【分析】先排前排有种不同排法,再排后排种不同排法,最终计算出答案即可.【详解】解:分两步完成:第一步:从6人中选3人排前排:种不同排法;其次步:剩下的3人排后排:种不同排法,再依据分步乘法计数原理:种不同排法,故选:B.【点睛】本题考查排列问题,是基础题.7.函数的图象大致是()A. B.C. D.【答案】C【解析】【分析】依据题意,分析可得为偶函数,可以解除,结合解析式求出、的值,解除、,即可得答案.【详解】解:依据题意,函数,有,函数为偶函数,解除,又由,解除,,函数在轴下方有图象,解除;故选:.【点睛】本题考查函数的图象分析,留意分析函数的奇偶性与特别值的函数值,属于基础题.8.当调查敏感问题时,一般难以获得被调查者的合作,所得结果可能不真实,此时通常采纳“瓦纳随机问答法”进行调查.为调查某高校学生谈恋爱的比例.提出问题如下:问题1:你现在谈恋爱吗?问题2:你学籍号尾数是偶数吗?设计了一副纸牌共100张,其中75张标有数字1,25张标有数字2.随机调查了该校1000名学生,每名学生随意抽取一张纸牌.若抽到标有数字1的纸牌回答问题1;若抽到标有数字2的纸牌回答问题2,回答“是”或“否”后放回.统计显示共有200名学生回答“是”,估计该高校学生现在谈恋爱的百分比是()A. B. C. D.【答案】A【解析】【分析】由题意回答问题2的学生有250人,其中有125人回答是,由此得到回答问题的学生有750人,其中人回答是,从而能估计该高校学生现在谈恋爱的百分比.【详解】解:由题意回答问题2的学生有:人,回答问题2的学生有人回答是,回答问题的学生有750人,其中人回答是,该高校学生现在谈恋爱的百分比是:.故选:.【点睛】本题考查该高校学生现在谈恋爱的百分比的求法,考查互斥事务、古典概型等基础学问,考查运算求解实力,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知函数,则()A. B.函数的微小值点为0C.函数的单调递减区间是 D.,不等式恒成立【答案】AB【解析】【分析】在已知函数解析式中,取求得推断;把代入函数解析式,利用导数求函数的单调性并求极值、最值推断.【详解】解:在中,取,可得.故正确;则,,.在上为增函数,,当时,,当时,,则在上单调递减,在上单调递增,的微小值为,即,故正确;错误.故选:.【点睛】本题考查利用导数探讨函数的单调性与极值、最值,考查运算求解实力,属于中档题.10.下列说法正确的是()A.对于独立性检验,随机变量的观测值值越小,判定“两变量有关系”犯错误的概率越小B.在回来分析中,相关指数越大,说明回来模型拟合的效果越好C.随机变量,若,,则D.以拟合一组数据时,经代换后的线性回来方程为,则,【答案】BD【解析】【分析】选项A对于独立性检验,随机变量的观测值值越小,判定“两变量有关系”犯错误的概率越大,推断选项A错误;选项B先说明残差平方和越小,所以回来模型拟合的效果越好,推断选项B正确;选项C先建立方程求出,推断选项C错误;选项D先求出回来方程,再求出,,推断选项D正确.【详解】选项A:对于独立性检验,随机变量的观测值值越小,判定“两变量有关系”犯错误的概率越大,故选项A错误;选项B:在回来分析中,相关指数越大,残差平方和越小,说明回来模型拟合的效果越好,故选项B正确;选项C:随机变量,若,,则,解得:,故选项C错误;选项D:因,所以,令,则,又,所以,,则,,故选项D正确.故选:BD.【点睛】本题考查独立性检验、回来分析、二项分布、线性回来方程求参数,是中档题.11.下列说法正确的是()A.若,则B.若复数,满足,则C.若复数的平方是纯虚数,则复数的实部和虛部相等D.“”是“复数是虚数”的必要不充分条件【答案】AD【解析】【分析】由求得推断A;设出,,证明在满足时,不肯定有推断B;举例说明C错误;由充分必要条件的判定说明D正确.【详解】若,则,故A正确;设,由,可得则,而不肯定为0,故B错误;当时为纯虚数,其实部和虚部不相等,故C错误;若复数是虚数,则,即所以“”是“复数是虚数”的必要不充分条件,故D正确;故选:AD【点睛】本题考查的是复数的相关学问,考查了学生对基础学问的驾驭状况,属于中档题.12.经济学中常常用弹性函数探讨函数的相对变更率和相对变更量.一般的,假如函数存在导函数,称为函数的弹性函数,下列说法正确的是()A.函数(为常数)的弹性函数是B.函数的弹性函数是C.D.【答案】ABD【解析】【分析】利用题目中的定义和导数的运算逐一推断即可.【详解】对于A,,即A正确;对于B,,即B正确;对于C,而,二者不相等,即C错误;对于D,即D正确故选:ABD【点睛】本题是一道新定义的题,考查了学生的分析实力和转化实力,较难.三、填空题:本题共4小题,每小题5分,共20分.13.曲线在点处的切线方程为______.【答案】【解析】【分析】求函数的导数,然后求出切线的斜率,再求出切线方程.【详解】解:的导数为,可得曲线在点处的切线斜率为,则曲线在点处的切线方程为,即.故答案为:.【点睛】本题考查利用导数探讨曲线上某点切线方程,考查方程思想和运算实力,属于基础题.14.用4种不同的颜色涂在四棱锥的各个面上,要求相邻面不同色,共有_______种涂法.【答案】72【解析】【分析】先给底面涂色,有4种涂法,设4个侧面为、、、,然后给、面;给面,分与相同色、与不同色,利用乘法原理可得结论.【详解】解:先给底面涂色,有4种涂法,设4个侧面为、、、,然后给面涂色,有3种;给面涂色,有2种;给面,若与相同色,则面可以涂2种;若与不同色,则面可以涂1种,所以共有.故答案为:72.【点睛】本题考查计数原理的运用,考查学生分析解决问题的实力,正确分步是关键,属于中档题.15.若复数满足,则的最小值为______.【答案】4【解析】【分析】依据条件可知,复数z在复平面内对应的点在以C(3,4)为圆心,以1为半径的圆上,进而求出|z|的最小值.【详解】满足|z﹣3﹣4i|=1的复数z在复平面内对应的点在以C(3,4)为圆心,以1为半径的圆上,如图所示,则|z|的最小值为.故答案为:4.【点睛】本题考查复数模的求法,复数的代数表示法及其几何意义,也考查数形结合的解题思想方法,属于基础题.16.已知,得______.若,则______.【答案】(1).1(2).【解析】【分析】利用赋值法解决即可.【详解】令可得令可得令可得因为所以,,结合可解得故答案为:1;.【点睛】本题考查的是利用赋值法解决二项式绽开式的系数和问题,较简洁.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满足或不满足的评价,通过汇总数据得到下面等高条形图:(1)依据所给等高条形图数据,完成下面的列联表:满足不满足男顾客女顾客(2)依据(1)中列联表,推断是否有的把握认为顾客对该商场服务的评价与性别有关?附:,.0.0500.0100.0013.841663510.828【答案】(1)答案见解析;(2)没有的把握认为顾客对该商场服务的评价与性别有关.【解析】【分析】依据等高条形图中的数据可得答案;计算出的值,然后与作比较即可.【详解】(1)由等高条形图中的数据可得:男顾客中满足的人数为:,不满足的人数为女顾客中满足的人数为:,不满足的人数为所以列联表如下:满足不满足男顾客4010女顾客3020(2)因为所以没有的把握认为顾客对该商场服务的评价与性别有关.【点睛】本题考查的是独立性检验,考查了学生的计算实力,属于基础题.18.据某县水资源管理部门估计,该县乡村饮用水井中含有杂质.为了弄清该估计值是否正确,须要进一步验证.由于对全部的水井进行检测花费太大,所以确定从全部饮用水井中随机抽取5口水井检测.(1)假设估计值是正确的,求抽取5口水井中至少有1口水井含有杂质的概率;(2)在概率中,我们把发生概率特别小(一般以小于0.05为标准)的事务称为小概率事务,意思是说,在随机试验中,假如某事务发生的概率特别小,那么它在一次试验中几乎是不行能发生的.假设在随机抽取的5口水井中有3口水井含有杂质,试推断“该县的乡村饮用水井中含有杂质”的估计是否正确,并说明理由.参考数据:,,.【答案】(1);(2)“该县乡村饮用水井中含有杂质”的估计是错误的.【解析】【分析】(1)利用独立重复试验与对立事务的概率求解;(2)利用二项分布求得在随机抽取的5口水井中有3口水井含有杂质的概率,与0.05比较大小得结论.【详解】解:(1)假设估计值是正确的,即随机抽一口水井,含有杂质的概率.抽取5口水井中至少有1口水井含有杂质的概率;(2)在随机抽取的5口水井中有3口水井含有杂质的概率为.说明在随机抽取的5口水井中有3口水井含有杂质是小概率事务,它在一次试验中几乎是不行能发生的,说明“该县的乡村饮用水井中含有杂质”的估计是错误的.【点睛】本题考查独立重复试验与二项分布在解决实际问题中的应用,考查计算实力,属于中档题.19.已知函数.(1)若,证明:当时,;(2)若过点可作曲线的3条切线,求的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)若,则,令,求导,利用单调性求得,即可得证;(2)设切点为,由,可得关于的方程,由过点可作曲线的3条切线,可得方程有三个解,令,依据函数的单调性求出的范围即可.【详解】(1)证明:若,则,令,则,当时,,函数为增函数,所以(3),即,得证.(2)解:设切点为,又,则,整理得,由题意可知此方程有三个解,令,,由,解得或,由解得,即函数在,上单调递增,在上单调递减.要使得有3个根,则,且(1),解得,即的取值范围为.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,属于中档题.20.线上学习是有效的教学协助形式,向阳中学高二某班共有10名学困生(独立学习有困难),为刚好给学困生释惑答疑,每天上午和下午各支配1次在线答疑.因多种缘由,每次只能满足6名学生同时登录参与在线答疑,且在上午和下午各有6名学生相互独立的登录参与在线答疑.(1)记“10名学困生每天每人至少参与一次在线答疑”为事务,求;(2)用表示该班每天上午和下午都参与在线答疑的学困生人数,求的分布列及的期望值.【答案】(1);(2)的分布列详见解析,.【解析】【分析】(1)分状况探讨上下午参与答疑学生的人数,用事务A的基本领件数除以样本空间总数可得答案;(2)求可能取值对应的概率,列出分布列,再求期望值.【详解】(1)问题中要做一件事:10位学生参与在线答疑,样本空间有三种状况:上午与下午均参与,上午参与下午不参与,上午不参与下午参与:而上午与下午参与的学生只有5种情形:2人,3人,4人,5人,6人,有2人上下午均参与时,剩下的学生有4人选上午,4人选下午,共有种可能,有3人上下午均参与时,剩下的学生有3人选上午,3人选下午,共有种可能,在4人上下午均参与时,剩下的学生有2人选午,2人选下午,共有种可能,有5人上下午均参与时,剩下的学生有1人选上午,1人选下午,共有种可能,有6人上下午均参与时,剩下的学生有0人选上午,0人选下午,共有种可能,样本空间总数为++++=44100,事务A的基本领件数为:有2人上下午均参与时,剩下的学生有4人选上午,4人选下午,共有,由此能求出P(A).(2)用表示该班每天上午和下午都参与在线答疑的学困生人数,可能取值为2,3,4,5,6,,,,,,所以的分布列为:23456的期望值.【点睛】本题考查了概率、随机变量的分布列,要娴熟的求出变量对应的概率,列出分布列求出期望值.21.随着人民生活水平的日益提高,某小区拥有私家车的数量与日俱增,物业公司统计了近六年小区私家车的数量,数据如下:年份201420152024202420242024编号123456数量(辆)4196116190218275(1)若该小区私家车的数量与年份编号的关系可用线性回来模型来拟合,恳求出关于的线性回来方程,并用相关指数分析其拟合效果(精确到0.01);(2)由于该小区没有配套停车位,车辆无序停放易造成交通拥堵,因此物业公司预在小区内划定肯定数量的停车位,若要求在2024年小区停车位数量仍可满足须要,则至少
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 16 无处不在的能量 说课稿-2023-2024学年科学六年级下册青岛版
- 美容院美容院加盟店运营管理与支持协议合同
- 基础会计学考试试题
- 2025年商洛运输从业资格证考试技巧
- 2025年安徽道路运输从业资格证模拟考试年新版
- 2025年内蒙古货运从业资格证考试试题和答案大全
- 2025年中小企业员工退休与再就业劳动合同范本3篇
- 2024-2025学年高中历史第六单元现代世界的科技与文化第27课新中国的科技成就课时作业岳麓版必修3
- 2024-2025学年新教材高中英语Unit2TravellingaroundSectionⅤListeningandTalking学案新人教版必修第一册
- 2024-2025学年高中数学课时分层作业4分析法含解析北师大版选修2-2
- 2021利达JB-QG-LD988EL JB-QT-LD988EL 火灾报警控制器 消防联动控制器调试手册
- 心血管介入护士进修汇报
- 九下名著阅读《儒林外史》考点+人物分析+中考真题
- 医院检验科安全风险评估报告表单
- 第23课《出师表》课件(共48张)
- 高一北师大版历史必修一知识点总结9篇
- 《企业的可持续发展》课件
- 零至三岁儿童及老年人中医保健指导专业知识讲座培训课件
- DB12-T 1305-2024 公路沥青路面泡沫沥青冷再生技术规范
- 夏普LCD-46LX750A电视机使用说明书
- 《人文科学概论》课件
评论
0/150
提交评论