2024-2025学年四川省泸州市天府老窖中学高三5月月考(期中)数学试题含解析_第1页
2024-2025学年四川省泸州市天府老窖中学高三5月月考(期中)数学试题含解析_第2页
2024-2025学年四川省泸州市天府老窖中学高三5月月考(期中)数学试题含解析_第3页
2024-2025学年四川省泸州市天府老窖中学高三5月月考(期中)数学试题含解析_第4页
2024-2025学年四川省泸州市天府老窖中学高三5月月考(期中)数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年四川省泸州市天府老窖中学高三5月月考(期中)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为,集合,则()A. B. C. D.2.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()A. B. C. D.3.若实数、满足,则的最小值是()A. B. C. D.4.已知向量,,且与的夹角为,则x=()A.-2 B.2 C.1 D.-15.已知实数满足不等式组,则的最小值为()A. B. C. D.6.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.7.已知函数,则函数的零点所在区间为()A. B. C. D.8.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A. B.C. D.9.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A. B.C. D.10.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A. B. C. D.11.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线12.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).14.已知为偶函数,当时,,则__________.15.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.16.将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.18.(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:19.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.20.(12分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.21.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.22.(10分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点.为椭圆的右焦点,为椭圆上关于原点对称的两点,连接分别交椭圆于两点.⑴求椭圆的标准方程;⑵若,求的值;⑶设直线,的斜率分别为,,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.本题考查了交集及其运算,考查了函数定义域的求法,是基础题.2.C【解析】

根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.3.D【解析】

根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.4.B【解析】

由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.本题考查了利用向量的数量积求向量的夹角,属于基础题.5.B【解析】

作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.6.D【解析】

将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题7.A【解析】

首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,,所以函数的零点所在区间为.故选:A本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.8.C【解析】

将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角,,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.9.C【解析】

在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C本题考查等比数列求和公式的应用,属于基础题.10.A【解析】

由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),

∴=(0,1),将绕原点O逆时针旋转得到,

设=(a,b),,则,即,

又,解得:,∴,对应复数为.故选:A.本题考查复数的代数表示法及其几何意义,是基础题.11.C【解析】

充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.12.B【解析】

分别作出各个选项中的函数的图象,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.本题考查函数单调性和值域的判断问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.192【解析】

根据题意,分步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.【详解】根据题意,分步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.14.【解析】

由偶函数的性质直接求解即可【详解】.故答案为本题考查函数的奇偶性,对数函数的运算,考查运算求解能力15.1元【解析】设分别生产甲乙两种产品为桶,桶,利润为元

则根据题意可得目标函数,作出可行域,如图所示作直线然后把直线向可行域平移,

由图象知当直线经过时,目标函数的截距最大,此时最大,

由可得,即此时最大,

即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1.【点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键.16.【解析】

先求出基本事件总数6×6=36,再由列举法求出“点数之和等于6”包含的基本事件的个数,由此能求出“点数之和等于6”的概率.【详解】基本事件总数6×6=36,点数之和是6包括共5种情况,则所求概率是.故答案为本题考查古典概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)见解析.【解析】

(1)将曲线的极坐标方程变形为,再由可将曲线的极坐标方程化为直角坐标方程,将直线的方程与曲线的方程联立,求出点、的坐标,即可得出线段的中点的坐标;(2)求得,写出直线的参数方程,将直线的参数方程与曲线的普通方程联立,利用韦达定理求得的值,进而可得出结论.【详解】(1)曲线的极坐标方程可化为,即,将代入曲线的方程得,所以,曲线的直角坐标方程为.将直线的极坐标方程化为普通方程得,联立,得或,则点、,因此,线段的中点为;(2)由(1)得,,易知的垂直平分线的参数方程为(为参数),代入的普通方程得,,因此,.本题考查曲线的极坐标方程与普通方程之间的转化,同时也考查了直线参数几何意义的应用,涉及韦达定理的应用,考查计算能力,属于中等题.18.(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】

(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望.【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.易知所以的分布列为0123.本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望.属于中档题.本题难点在于认识到.19.(1)(2)见解析(3)存在唯一的等差数列,其通项公式为,满足题设【解析】

(1)由,可得公比,即得;(2)由(1)和可得数列的递推公式,即可知结果为常数,即得证;(3)由(2)可得数列的通项公式,,设出等差数列,再根据不等关系来算出的首项和公差即可.【详解】(1)设等比数列的公比为q,因为,,所以,解得.所以数列的通项公式为:.(2)由(1)得,当,时,可得①,②②①得,,则有,即,,.因为,由①得,,所以,所以,.所以数列是以为首项,1为公差的等差数列.(3)由(2)得,所以,.假设存在等差数列,其通项,使得对任意,都有,即对任意,都有.③首先证明满足③的.若不然,,则,或.(i)若,则当,时,,这与矛盾.(ii)若,则当,时,.而,,所以.故,这与矛盾.所以.其次证明:当时,.因为,所以在上单调递增,所以,当时,.所以当,时,.再次证明.(iii)若时,则当,,,,这与③矛盾.(iv)若时,同(i)可得矛盾.所以.当时,因为,,所以对任意,都有.所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论