版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年四川省成都市新都区高三高考第一次模拟考试数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()A.或 B.或 C.或 D.或2.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)3.已知为等腰直角三角形,,,为所在平面内一点,且,则()A. B. C. D.4.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则()A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P25.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},则=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}6.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于()A. B.8 C. D.47.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A. B. C. D.8.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为()A. B. C. D.9.函数在上的图象大致为()A. B.C. D.10.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.11.已知命题若,则,则下列说法正确的是()A.命题是真命题B.命题的逆命题是真命题C.命题的否命题是“若,则”D.命题的逆否命题是“若,则”12.设复数满足,在复平面内对应的点为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件则的最小值为__________.14.正方体的棱长为2,是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),为正方体表面上的动点,当弦的长度最大时,的取值范围是______.15.已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为____16.已知复数z是纯虚数,则实数a=_____,|z|=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和18.(12分)已知函数.(1)求曲线在点处的切线方程;(2)若对任意的,当时,都有恒成立,求最大的整数.(参考数据:)19.(12分)设函数.(1)时,求的单调区间;(2)当时,设的最小值为,若恒成立,求实数t的取值范围.20.(12分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,,证明:.21.(12分)已知(1)若,且函数在区间上单调递增,求实数a的范围;(2)若函数有两个极值点,且存在满足,令函数,试判断零点的个数并证明.22.(10分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,,,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
设,,根据和抛物线性质得出,再根据双曲线性质得出,,最后根据余弦定理列方程得出、间的关系,从而可得出离心率.【详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,,则,为双曲线上的点,则,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故选:D.本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.2.B【解析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。3.D【解析】
以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,,,由,易得,则.故选:D本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.4.C【解析】
将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1=;方案二坐车可能:312、321,所以,P1=;所以P1+P2=故选C.本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.5.C【解析】
根据集合的并集、补集的概念,可得结果.【详解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故选:C.本题考查的是集合并集,补集的概念,属基础题.6.C【解析】
将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.【详解】F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故选C.本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.7.C【解析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,
该几何体的表面积:.故选C.本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.8.B【解析】
根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】∵双曲线与的渐近线相同,且焦点在轴上,∴可设双曲线的方程为,一个焦点为,∴,∴,故的标准方程为.故选:B此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.9.A【解析】
首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.10.C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.11.B【解析】
解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误.故选:B.本题考查四种命题的关系,考查推理能力,属于基础题.12.B【解析】
设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设∵,∴,解得.故选:B本题考查复数的几何意义的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.14.【解析】
由弦的长度最大可知为球的直径.由向量的线性运用表示出,即可由范围求得的取值范围.【详解】连接,如下图所示:设球心为,则当弦的长度最大时,为球的直径,由向量线性运算可知正方体的棱长为2,则球的半径为1,,所以,而所以,即故答案为:.本题考查了空间向量线性运算与数量积的运算,正方体内切球性质应用,属于中档题.15.【解析】
由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:考查圆柱的轴截面和其体积的求法,是基础题.16.11【解析】
根据复数运算法则计算复数z,根据复数的概念和模长公式计算得解.【详解】复数z,∵复数z是纯虚数,∴,解得a=1,∴z=i,∴|z|=1,故答案为:1,1.此题考查复数的概念和模长计算,根据复数是纯虚数建立方程求解,计算模长,关键在于熟练掌握复数的运算法则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
(1)由化为,利用数列的通项公式和前n项和的关系,得到是首项为,公差为的等差数列求解.(2)由(1)得到,再利用错位相减法求解.【详解】(1)可以化为,,,,又时,数列从开始成等差数列,,代入得是首项为,公差为的等差数列,,.(2)由(1)得,,,两式相减得,,.本题主要考查数列的通项公式和前n项和的关系和错位相减法求和,还考查了运算求解的能力,属于中档题.18.(1)(2)2【解析】
(1)先求得切点坐标,利用导数求得切线的斜率,由此求得切线方程.(2)对分成,两种情况进行分类讨论.当时,将不等式转化为,构造函数,利用导数求得的最小值(设为)的取值范围,由的得在上恒成立,结合一元二次不等式恒成立,判别式小于零列不等式,解不等式求得的取值范围.【详解】(1)已知函数,则处即为,又,,可知函数过点的切线为,即.(2)注意到,不等式中,当时,显然成立;当时,不等式可化为令,则,,所以存在,使.由于在上递增,在上递减,所以是的唯一零点.且在区间上,递减,在区间上,递增,即的最小值为,令,则,将的最小值设为,则,因此原式需满足,即在上恒成立,又,可知判别式即可,即,且可以取到的最大整数为2.本小题主要考查利用导数求切线方程,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,属于难题.19.(1)的增区间为,减区间为;(2).【解析】
(1)求出函数的导数,由于参数的范围对导数的符号有影响,对参数分类,再研究函数的单调区间;(2)由(1)的结论,求出的表达式,由于恒成立,故求出的最大值,即得实数的取值范围的左端点.【详解】解:(1)解:,当时,,解得的增区间为,解得的减区间为.(2)解:若,由得,由得,所以函数的减区间为,增区间为;,因为,所以,,令,则恒成立,由于,当时,,故函数在上是减函数,所以成立;当时,若则,故函数在上是增函数,即对时,,与题意不符;综上,为所求.本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的单调区间,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细.20.(1)见解析;(2)见解析【解析】
(1)求得的导函数,对分成两种情况,讨论的单调性.(2)由(1)判断出的取值范围,根据韦达定理求得的关系式,利用差比较法,计算,通过构造函数,利用导数证得,由此证得,进而证得不等式成立.【详解】(1).当时,,此时在上单调递减;当时,由解得或,∵是增函数,∴此时在和单调递减,在单调递增.(2)由(1)知.,,,不妨设,∴,,令,∴,∴在上是减函数,,∴,即.本小题主要考查利用导数研究函数的单调区间,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.21.(1)(2)函数有两个零点和【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境监测与评估服务
- 2024建筑工程联合承包合同范本
- 灰土预购合同模板
- 化学纤维的吸湿性与快干性研究考核试卷
- 样算正规租房合同范例
- 深圳零星装修合同范例
- 正规三方借款合同范例
- 活动房制作与安装合同范例
- 沙发翻新转让合同模板
- 农村柴火购买合同范例
- 2022-2023综合实践活动四年级上册教学进度安排表及全一册教案
- 四年级上册心理健康教育课件-相亲相爱一家人 全国通用(共19张PPT)
- 新北师大版八年级上册英语(全册知识点语法考点梳理、重点题型分类巩固练习)(家教、补习、复习用)
- 急性冠脉综合征典型和不典型心电图表现课件
- 兵教兵一种有效的合作学习方式
- 国际商务(International Business)英文全套完整课件
- 企业清洁生产审计手册(doc 130页)
- 如何开拓陌生市场
- 公司登记备案申请书备案填写样表
- 内蒙古自治区业主委员会章程
- 角膜溃疡(课堂PPT)
评论
0/150
提交评论