版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年广东大埔华侨二中高三5月教学测评数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.2.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.3.若复数()在复平面内的对应点在直线上,则等于()A. B. C. D.4.设复数满足,则()A. B. C. D.5.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.6.已知实数,则的大小关系是()A. B. C. D.7.一艘海轮从A处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.6海里 B.6海里 C.8海里 D.8海里8.已知复数z满足,则在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.11.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A. B. C. D.12.已知等差数列的前项和为,,,则()A.25 B.32 C.35 D.40二、填空题:本题共4小题,每小题5分,共20分。13.在四面体中,分别是的中点.则下述结论:①四面体的体积为;②异面直线所成角的正弦值为;③四面体外接球的表面积为;④若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为.其中正确的有_____.(填写所有正确结论的编号)14.已知数列的前项满足,则______.15.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____16.(5分)已知函数,则不等式的解集为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.18.(12分)已知椭圆的短轴的两个端点分别为、,焦距为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上.19.(12分)已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且.证明:直线与圆相切;求面积的最小值.20.(12分)已知矩形纸片中,,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S.(1)将l表示成θ的函数,并确定θ的取值范围;(2)求l的最小值及此时的值;(3)问当θ为何值时,的面积S取得最小值?并求出这个最小值.21.(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?22.(10分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题2.B【解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.3.C【解析】
由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.本题考查复数的几何表示和共轭复数的定义,属于基础题.4.D【解析】
根据复数运算,即可容易求得结果.【详解】.故选:D.本题考查复数的四则运算,属基础题.5.A【解析】
根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A本题主要考查了向量平行的坐标运算,属于容易题.6.B【解析】
根据,利用指数函数对数函数的单调性即可得出.【详解】解:∵,∴,,.∴.故选:B.本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.7.A【解析】
先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.【详解】由题意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故选:A.本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.8.A【解析】
设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.9.C【解析】
讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,,由开口向上,则恒成立;当恒成立时,若,则不恒成立,不符合题意,若时,要使得恒成立,则,即.所以“”是“恒成立”的充要条件.故选:C.本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出是的充分条件;若,则推出是的必要条件.10.B【解析】
画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.11.C【解析】由题意可得双曲线的渐近线的方程为.∵为线段的中点,∴,则为等腰三角形.∴由双曲线的的渐近线的性质可得∴∴,即.∴双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).12.C【解析】
设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.【详解】设等差数列的首项为,公差为,则,解得,∴,即有.故选:C.本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13.①③④.【解析】
补图成长方体,在长方体中利用割补法求四面体的体积,和外接球的表面积,以及异面直线的夹角,作出截面即可计算截面面积的最值.【详解】根据四面体特征,可以补图成长方体设其边长为,,解得补成长,宽,高分别为的长方体,在长方体中:①四面体的体积为,故正确②异面直线所成角的正弦值等价于边长为的矩形的对角线夹角正弦值,可得正弦值为,故错;③四面体外接球就是长方体的外接球,半径,其表面积为,故正确;④由于,故截面为平行四边形,可得,设异面直线与所成的角为,则,算得,.故正确.故答案为:①③④.此题考查根据几何体求体积,外接球的表面积,异面直线夹角和截面面积最值,关键在于熟练掌握点线面位置关系的处理方法,补图法作为解决体积和外接球问题的常用方法,平常需要积累常见几何体的补图方法.14.【解析】
由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法.【详解】∵①,∴时,②,①-②得,∴,又,∴().故答案为:.本题考查求数列通项公式,由已知条件.类比已知求的解题方法求解.15.【解析】
双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率.【详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条渐近线的斜率为1,即,,,故答案为:.本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题.16.【解析】
易知函数的定义域为,且,则是上的偶函数.由于在上单调递增,而在上也单调递增,由复合函数的单调性知在上单调递增,又在上单调递增,故知在上单调递增.令,知,则不等式可化为,即,可得,又,是偶函数,可得,由在上单调递增,可得,则,解得,故不等式的解集为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】
(1)先求导,再对m分类讨论,求出的单调性;(2)对m分三种情况讨论求函数在区间上的最小值即得解.【详解】(1)若,当时,;当时.,所以在上单调递增,在上单调递减若.在R上单调递增若,当时,;当时.,所以在上单调递增,在上单调递减(2)由(1)可知,当时,在上单调递增,则.则不合题意当时,在上单调递减,在上单调递增.则,即又因为单调递增,且,故综上,本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.18.(1);(2)见解析.【解析】
(1)由已知条件得出、的值,进而可得出的值,由此可求得椭圆的方程;(2)设点,可得,且,,求出直线的斜率,进而可求得直线与的方程,将直线直线与的方程联立,求出点的坐标,即可证得结论.【详解】(1)由题设,得,所以,即.故椭圆的方程为;(2)设,则,,.所以直线的斜率为,因为直线、的斜率的积为,所以直线的斜率为.直线的方程为,直线的方程为.联立,解得点的纵坐标为.因为点在椭圆上,所以,则,所以点在轴上.本题考查椭圆方程的求解,同时也考查了点在定直线的证明,考查计算能力与推理能力,属于中等题.19.证明见解析;1.【解析】
由题意可得椭圆的方程为,由点在直线上,且知的斜率必定存在,分类讨论当的斜率为时和斜率不为时的情况列出相应式子,即可得出直线与圆相切;由知,的面积为【详解】解:由题意,椭圆的焦点在轴上,且,所以.所以椭圆的方程为.由点在直线上,且知的斜率必定存在,当的斜率为时,,,于是,到的距离为,直线与圆相切.当的斜率不为时,设的方程为,与联立得,所以,,从而.而,故的方程为,而在上,故,从而,于是.此时,到的距离为,直线与圆相切.综上,直线与圆相切.由知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1.本题主要考查直线与椭圆的位置关系、直线与圆的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查化归与转化思想,属于难题.20.(1)(2),的最小值为.(3)时,面积取最小值为【解析】
(1),利用三角函数定义分别表示,且,即可得到关于的解析式;,,则,即可得到的范围;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,设为,令,则,即可设,利用导函数判断函数的单调性,即可求得的最大值,进而求解;(3)由题,,则,设,,利用导函数求得的最大值,即可求得的最小值.【详解】解:(1),故.因为,所以,,所以,又,,则,所以,所以(2)记,则,设,,则,记,则,令,则,当时,;当时,,所以在上单调递增,在上单调递减,故当时取最小值,此时,的最小值为.(3)的面积,所以,设,则,设,则,令,,所以当时,;当时,,所以在上单调递增,在上单调递减,故当,即时,面积取最小值为本题考查三角函数定义的应用,考查利用导函数求最值,考查运算能力.21.(1)(2)①②第一种抽奖方案.【解析】
(1)方案一中每一次摸到红球的概率为,每名顾客有放回的抽3次获180元返金劵的概率为,根据相互独立事件的概率可知两顾客都获得180元返金劵的概率(2)①分别计算方案一,方案二顾客获返金卷的期望,方案一列出分布列计算即可,方案二根据二项分布计算期望即可②根据①得出结论.【详解】(1)选择方案一,则每一次摸到红球的概率为设“每位顾客获得180元返金劵”为事件A,则所以两位顾客均获得180元返金劵的概率(2)①若选择抽奖方案一,则每一次摸到红球的概率为,每一次摸到白球的概率为.设获得返金劵金额为元,则可能的取值为60,100,140,180.则;;;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025武汉市微型计算机的买卖合同
- 农村土地流转合同标准(2025年度):土地规模经营与效益提升
- 2025年度农产品电商平台入驻合作合同2篇
- 2025北京市室内装修合同
- 二零二五年度风力发电工程款结算与环境保护合同3篇
- 二零二五年度旅游公司整体转让合同3篇
- 2025年度年度公司终止职工劳动合同补偿方案合同3篇
- 2025年度工业用地租赁合同书(含环保标准)3篇
- 2025年度农村房屋土地租赁与农村环境治理合作协议
- 二零二五年度智能停车场租赁管理服务合同3篇
- 部编人教版 六年级下册道德与法治课堂作业(含答案)
- 幼儿园大班数学:《长颈鹿的水果店》 课件
- 独生子女证明(模板)
- 侵入性器械、操作相关感染防控制度
- 更换电表申请书3篇
- 2019年北京外国语大学博士生英语入学考试试题
- 肝胆外科出科考试试卷
- 塔吊运行作业方案
- 重庆中考数学最新26题练习及答案
- 江苏卫视跨年演唱会电视转播技术方案-209年精选文档
- 水电工程施工机械台时费定额(2004年版)
评论
0/150
提交评论