版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)2.已知集合,,,则集合()A. B. C. D.3.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是A. B. C. D.4.一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.5.在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.设,其中a,b是实数,则()A.1 B.2 C. D.7.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为()A. B. C.4 D.28.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占2019年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的()A.倍 B.倍 C.倍 D.倍9.已知函数的图象如图所示,则可以为()A. B. C. D.10.设命题p:>1,n2>2n,则p为()A. B.C. D.11.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.12.设i为虚数单位,若复数,则复数z等于()A. B. C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,若,则数列的前n项和______.14.已知圆,直线与圆交于两点,,若,则弦的长度的最大值为___________.15.若一组样本数据7,9,,8,10的平均数为9,则该组样本数据的方差为______.16.若,则的展开式中含的项的系数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.18.(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证:19.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.20.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.21.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.22.(10分)已知六面体如图所示,平面,,,,,,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.2.D【解析】
根据集合的混合运算,即可容易求得结果.【详解】,故可得.故选:D.【点睛】本题考查集合的混合运算,属基础题.3.D【解析】
由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示.若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.4.A【解析】
根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.5.D【解析】
将复数化简得,,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.6.D【解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.7.D【解析】
设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.【详解】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.【点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.8.B【解析】
设贫困户总数为,利用表中数据可得脱贫率,进而可求解.【详解】设贫困户总数为,脱贫率,所以.故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.故选:B【点睛】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.9.A【解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断,在上无零点,不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断,在上单调递减,不符合题意,排除C.故选:A.【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.10.C【解析】根据命题的否定,可以写出:,所以选C.11.D【解析】
由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.12.B【解析】
根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【详解】由题为等差数列,∴,∴,∴,∴,故答案为【点睛】本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.14.【解析】
取的中点为M,由可得,可得M在上,当最小时,弦的长才最大.【详解】设为的中点,,即,即,,.设,则,得.所以,.故答案为:【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.15.1【解析】
根据题意,由平均数公式可得,解得的值,进而由方差公式计算,可得答案.【详解】根据题意,数据7,9,,8,10的平均数为9,则,解得:,则其方差.故答案为:1.【点睛】本题考平均数、方差的计算,考查运算求解能力,求解时注意求出的值,属于基础题.16.【解析】
首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)证明见解析【解析】
(1)根据条件可得,进而得到,即可得到椭圆方程;(2)设直线的方程为,联立,分别表示出直线和直线斜率,相加利用根与系数关系即可得到.【详解】解:(1)圆与有且仅有两个交点且都在轴上,所以,又,,解得,故椭圆的方程为;(2)设直线的方程为,联立,整理可得,则,解得,设点,,则,,所以,故直线与直线的斜率互为相反数.【点睛】本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程,属于中档题.18.(1);(2)见解析.【解析】
(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.【详解】(1)对任意恒成立等价于对任意恒成立,令,,则,当时,,单调递增;当时,,单调递减;有最大值,.(2)证明:由(1)知,当时,即,,,令,则,令,则,在上是增函数,又,当时,;当时,,在上是减函数,在上是增函数,,即,.【点睛】本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.19.(1);(2)【解析】
(1)根据横坐标为3的点与抛物线焦点的距离为4,由抛物线的定义得到求解.(2)设过点的直线方程为,根据直线与圆相切,则有,整理得:,根据题意,建立,将韦达定理代入求解.【详解】(1)因为横坐标为3的点与抛物线焦点的距离为4,由抛物线的定义得:,解得:.(2)设过点的直线方程为,因为直线与圆相切,所以,整理得:,,由题意得:所以,,因为,所以,所以.【点睛】本题主要考查抛物线的定义及点与抛物线,直线与圆的位置关系,还考查了运算求解的能力,属于中档题.20.(1)证明见解析;(2)1【解析】
(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值.【详解】(1)四边形为菱形,,平面,,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,,,,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,,菱形的边长为1.【点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平.21.(1);(2)见解析【解析】
(1)按分层抽样得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超几何分布求解即可【详解】(1)因为学生总数为1000人,该年级分文、理科按男女用分层抽样抽取10人,则抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值为0,1,2,3,,,,,的分布列为0123.【点睛】本题考查分层抽样,考查超几何分布及期望,考查运算求解能力,是基础题22.(1)证明见解析(2)【解析】
(1)连接,设,连接.通过证明,证得直线平面.(2)建立空间直角坐标系,利用平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 完整全面的土木工程办公楼毕业设计计算书
- 2024年度城市轨道交通电线电缆供货与安装合同3篇
- 2024年度新能源汽车充电设施建设服务合同2篇
- 《管理经济学》课件
- 2024年度建筑施工合同(含设计与材料)
- 《对小课题研究的几点思考》课件
- 体适能评定理论与方法课件
- 《脑出血康复训练》课件
- 2024年度信息技术外包服务详细合同书3篇
- 2024中国电信青海海西分公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 深圳大学《西方文明史》2023-2024学年第一学期期末试卷
- 2024-2030年中国肉牛养殖产业前景预测及投资效益分析报告权威版
- 租赁合同 排他条款
- 2024-2030年中国数据中心IT基础设施第三方服务行业前景预测及投资模式分析报告
- 医院培训课件:《医院感染预防和职业防护》
- 2024年同等学力申硕英语考试真题
- 河北省石家庄市长安区2023-2024学年五年级上学期期中英语试卷
- 节约粮食英文课件
- 初中数学30种模型(几何知识点)
- 固体废弃物专项措施方案
- 多能互补规划
评论
0/150
提交评论