版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,若,则()A. B. C. D.2.已知命题若,则,则下列说法正确的是()A.命题是真命题B.命题的逆命题是真命题C.命题的否命题是“若,则”D.命题的逆否命题是“若,则”3.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或54.已知数列满足,则()A. B. C. D.5.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是()A. B. C. D.6.函数的图象大致是()A. B.C. D.7.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.8.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.9.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.11.在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为()A. B. C. D.12.二项式展开式中,项的系数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若满足,且方向相同,则__________.14.已知函数若关于的不等式的解集为,则实数的所有可能值之和为_______.15.在的展开式中的系数为,则_______.16.在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.(1)当时,记,求的分布列及数学期望;(2)当,时,求且的概率.18.(12分)在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.19.(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.20.(12分)求下列函数的导数:(1)(2)21.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.22.(10分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由平行求出参数,再由数量积的坐标运算计算.【详解】由,得,则,,,所以.故选:B.【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.2.B【解析】
解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误.故选:B.【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.3.B【解析】
根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.4.C【解析】
利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.5.C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C.考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.6.C【解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.7.C【解析】
画出几何体的图形,然后转化判断四个命题的真假即可.【详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.【点睛】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.8.D【解析】
根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【点睛】本题主要考查数列递推公式的应用,属于中档题.9.A【解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.10.A【解析】
由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.【点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.11.B【解析】
作出图形,设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.【详解】如下图所示:设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,四边形为正方形,、分别为、的中点,则且,四边形为平行四边形,且,且,且,则四边形为平行四边形,,平面,则存在直线平面,使得,若平面,则平面,又平面,则平面,此时,平面为平面,直线不可能与平面平行,所以,平面,,平面,平面,平面平面,,,所以,四边形为平行四边形,可得,为的中点,同理可证为的中点,,,因此,.故选:B.【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.12.D【解析】
写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.【详解】∵,∴,解得或,时,满足题意,时,,方向相反,不合题意,舍去.∴.故答案为:1.【点睛】本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.14.【解析】
由分段函数可得不满足题意;时,,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和.【详解】解:由函数,可得的增区间为,,时,,,时,,当关于的不等式的解集为,,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点.综上可得的所有值的和为1.故答案为:1.【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题.15.2【解析】
首先求出的展开项中的系数,然后根据系数为即可求出的取值.【详解】由题知,当时有,解得.故答案为:.【点睛】本题主要考查了二项式展开项的系数,属于简单题.16.【解析】
结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可【详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:【点睛】本题考查由三角函数图像求解解析式,数形结合思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析,0(2)【解析】
(1)即该选手答完3道题后总得分,可能出现的情况为3道题都答对,答对2道答错1道,答对1道答错2道,3道题都答错,进而求解即可;(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又,则第一题答对,第二题第三题至少有一道答对,进而求解.【详解】解:(1)的取值可能为,,1,3,又因为,故,,,,所以的分布列为:13所以(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又已知,第一题答对,若第二题回答正确,则其余6题可任意答对3题;若第二题回答错误,第三题回答正确,则后5题可任意答对题,此时的概率为(或).【点睛】本题考查二项分布的分布列及期望,考查数据处理能力,考查分类讨论思想.18.(1);(2)7.【解析】分析:(1)由三角形面积公式和已知条件求得sinA的值,进而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.详解:(1)∵,∴,∵为锐角,∴;(2)由余弦定理得:.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.19.(1)或;(2)【解析】
(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当时,原不等式可化为.①当时,则,所以;②当时,则,所以;⑧当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.【点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.20.(1);(2).【解析】
(1)根据复合函数的求导法则可得结果.(2)同样根据复合函数的求导法则可得结果.【详解】(1)令,,则,而,,故.(2)令,,则,而,,故,化简得到.【点睛】本题考查复合函数的导数,此类问题一般是先把函数分解为简单函数的复合,再根据复合函数的求导法则可得所求的导数,本题属于容易题.21.(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析【解析】
(1)根据频率分布直方图可求出平均值和样本方差;(2)由题意知服从二项分布,分别求出,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学庆祝国庆节的游戏活动方案
- 机场卫生间装修改造施工方案
- 医疗机构健康教育方案
- 高速公路改建拆除施工方案
- 桥梁抗震预应力施工方案
- 市场管理合同(2篇)
- 智能城市环境保护管理方案
- 合肥2024年09版小学四年级下册英语第二单元期末试卷
- 中小学心理健康月活动方案
- 公共交通安全项目实施方案
- 场景表模板(影视美术专业)(剧本统筹表)
- 完整版旋挖桩施工方案
- 中国写意花鸟画(课堂PPT)
- GB∕T 16754-2021 机械安全 急停功能 设计原则
- 挂篮施工安全教育培训
- 费森尤斯注射泵“阿吉”说明书
- 音标复习课件
- 摄像机安装施工规范
- 10kV线路跨越高速公路施工方案(共21页)
- 多目标线性规划的若干解法及MATLAB实现
- 10以内加减法练习题大全
评论
0/150
提交评论