版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,满足对任意的实数,都有成立,则实数的取值范围为()A. B. C. D.2.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则()A. B. C. D.3.在中,角的对边分别为,若.则角的大小为()A. B. C. D.4.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.5.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()A.300, B.300, C.60, D.60,6.函数(或)的图象大致是()A. B. C. D.7.等差数列的前项和为,若,,则数列的公差为()A.-2 B.2 C.4 D.78.已知函数为奇函数,则()A. B.1 C.2 D.39.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.10.在等差数列中,,,若(),则数列的最大值是()A. B.C.1 D.311.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则12.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°14.在棱长为的正方体中,是正方形的中心,为的中点,过的平面与直线垂直,则平面截正方体所得的截面面积为______.15.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_________种(用数字作答),16.已知集合,.若,则实数a的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.18.(12分)如图,在中,点在上,,,.(1)求的值;(2)若,求的长.19.(12分)已知矩阵,.求矩阵;求矩阵的特征值.20.(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数).以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的极坐标方程;(2)设和交点的交点为,求的面积.21.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.22.(10分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值范围.【详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是.故选:B.【点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.2.C【解析】
求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以.故选:C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.3.A【解析】
由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选A.【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.4.D【解析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.5.B【解析】
由频率分布直方图求出在此路段上汽车行驶速度在区间的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过的频率.【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间的频率为,∴在此路段上汽车行驶速度在区间的车辆数为:,行驶速度超过的频率为:.故选:B.【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.6.A【解析】
确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.【详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,,排除D,故选:A.【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.7.B【解析】
在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.8.B【解析】
根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.9.D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.10.D【解析】
在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.11.C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.12.C【解析】
易得,,又,平方计算即可得到答案.【详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,,,所以,即,故离心率为.故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13.4【解析】
设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O【点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.14.【解析】
确定平面即为平面,四边形是菱形,计算面积得到答案.【详解】如图,在正方体中,记的中点为,连接,则平面即为平面.证明如下:由正方体的性质可知,,则,四点共面,记的中点为,连接,易证.连接,则,所以平面,则.同理可证,,,则平面,所以平面即平面,且四边形即平面截正方体所得的截面.因为正方体的棱长为,易知四边形是菱形,其对角线,,所以其面积.故答案为:【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力.15.1080【解析】
按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.【详解】将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,则不同的分配方案有种.故答案为:1080【点睛】本题主要考查分组分配问题,还考查了理解辨析的能力,属于中档题.16.9【解析】
根据集合交集的定义即得.【详解】集合,,,,则a的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)证明见解析【解析】
(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.(2),,因为,,所以要证,只需证,即证,因为,所以只要证,即证,即证,因为,所以只需证,因为,所以成立,所以.【点睛】本小题主要考查绝对值不等式的解法,考查分析法证明不等式,考查基本不等式的运用,属于中档题.18.(1);(2).【解析】
(1)由两角差的正弦公式计算;(2)由正弦定理求得,再由余弦定理求得.【详解】(1)因为,所以.因为,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【点睛】本题考查两角差的正弦公式,考查正弦定理和余弦定理,属于中档题.19.;,.【解析】
由题意,可得,利用矩阵的知识求解即可.矩阵的特征多项式为,令,求出矩阵的特征值.【详解】设矩阵,则,所以,解得,,,,所以矩阵;矩阵的特征多项式为,令,解得,,即矩阵的两个特征值为,.【点睛】本题考查矩阵的知识点,属于常考题.20.(1);(2)【解析】
(1)先将曲线的参数方程化为普通方程,再将普通方程化为极坐标方程即可.(2)将和的极坐标方程联立,求得两个曲线交点的极坐标,即可由极坐标的含义求得的面积.【详解】(1)曲线的参数方程为(α为参数),消去参数的的直角坐标方程为.所以的极坐标方程为(2)解方程组,得到.所以,则或().当()时,,当()时,.所以和的交点极坐标为:,.所以.故的面积为.【点睛】本题考查了参数方程与普通方程的转化,直角坐标方程与极坐标的转化,利用极坐标求三角形面积,属于中档题.21.(1)43,47;(2)分布列见解析,.【解析】
(1)根据茎叶图即可得到中位数和众数;(2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.【详解】(1)中位数为,众数为.(2)被调查的名工人中优秀员工的数量,任取一名优秀员工的概率为,故,,,的分布列如下:故【点睛】此题考查根据茎叶图求众数和中位数,求离散型随机变量分布列,根据分布列求解期望,关键在于准确求解概率,若能准确识别二项分布对于解题能够起到事半功倍的作用.22.(1)证明见解析;(2).【解析】
(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【详解】(1)过点交于点,连接,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年通信设备采购与维护合同2篇
- 电梯安装工程2025年度技术咨询合同6篇
- 二零二五年度论坛活动策划服务合同模板6篇
- 二零二五版搬家服务及家居清洁维护合同3篇
- 二零二五年度废钢市场供应与环保处理服务合同3篇
- 二零二五版房屋买卖及邻里关系协调服务合同3篇
- 二零二五年度股东干股合作企业社会责任履行合同3篇
- 幼儿园2025年度食品供应合同2篇
- 二零二五版租赁房屋改造装修合同3篇
- 二零二五年酒店股权分割与资产重组咨询合同3篇
- 2023社会责任报告培训讲稿
- 2023核电厂常规岛及辅助配套设施建设施工技术规范 第8部分 保温及油漆
- 2025年蛇年春联带横批-蛇年对联大全新春对联集锦
- 表B. 0 .11工程款支付报审表
- 警务航空无人机考试题库及答案
- 空气自动站仪器运营维护项目操作说明以及简单故障处理
- 新生儿窒息复苏正压通气课件
- 法律顾问投标书
- 班主任培训简报4篇(一)
- 成都市数学八年级上册期末试卷含答案
- T-CHSA 020-2023 上颌骨缺损手术功能修复重建的专家共识
评论
0/150
提交评论