版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年上海市师范大学第二附属中学高三下期末试卷数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A. B. C. D.2.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.263.执行如图的程序框图,若输出的结果,则输入的值为()A. B.C.3或 D.或4.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.5.已知是的共轭复数,则()A. B. C. D.6.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()A. B.C. D.7.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、、、、为顶点的多边形为正五边形,且,则()A. B. C. D.8.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.9.执行如下的程序框图,则输出的是()A. B.C. D.10.已知数列为等差数列,且,则的值为()A. B. C. D.11.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.512.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为()A.12 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线方程是_________.14.“今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈.”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺.”则每天增加的数量为____尺,设该女子一个月中第n天所织布的尺数为,则______.15.已知函数为奇函数,,且与图象的交点为,,…,,则______.16.已知数列满足,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数,(是自然对数的底数).(Ⅰ)讨论函数极值点的个数;(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.18.(12分)已知点到抛物线C:y1=1px准线的距离为1.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值.19.(12分)已知函数.(1)解不等式;(2)若函数存在零点,求的求值范围.20.(12分)如图,三棱台中,侧面与侧面是全等的梯形,若,且.(Ⅰ)若,,证明:∥平面;(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.22.(10分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,,,.故选:D.本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.2.D【解析】
利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.3.D【解析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得
,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为
或3,故选:D.本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.4.B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.5.A【解析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.6.D【解析】
由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,∴,即,∴,∴数列是以为公比的等比数列,而,所以,∴当时,,故选:D.本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.7.A【解析】
利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题.【详解】解:.故选:A本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题.8.B【解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.9.A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.10.B【解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.11.D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.12.C【解析】
过作于,连接,易知,,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可.【详解】在和中,,所以,则,过作于,连接,显然,则,且,又因为,所以平面,所以,当最大时,取得最大值,取的中点,则,所以,因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以的最大值为椭圆的短轴长的一半,故最大值为,所以最大值为,故的最大值为.故选:C.本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用导数的运算法则求出导函数,再利用导数的几何意义即可求解.【详解】求导得,所以,所以切线方程为故答案为:本题考查了基本初等函数的导数、导数的运算法则以及导数的几何意义,属于基础题.14.52【解析】
设从第2天开始,每天比前一天多织尺布,由等差数列前项和公式求出,由此利用等差数列通项公式能求出.【详解】设从第2天开始,每天比前一天多织d尺布,
则,
解得,即每天增加的数量为,
,故答案为,52.本题主要考查等差数列的通项公式、等差数列的求和公式,意在考查利用所学知识解决问题的能力,属于中档题.15.18【解析】
由题意得函数f(x)与g(x)的图像都关于点对称,结合函数的对称性进行求解即可.【详解】函数为奇函数,函数关于点对称,,函数关于点对称,所以两个函数图象的交点也关于点(1,2)对称,与图像的交点为,,…,,两两关于点对称,.故答案为:18本题考查了函数对称性的应用,结合函数奇偶性以及分式函数的性质求出函数的对称性是解决本题的关键,属于中档题.16.【解析】
数列满足知,数列以3为公比的等比数列,再由已知结合等比数列的性质求得的值即可.【详解】,数列是以3为公比的等比数列,又,,.故答案为:.本题考查了等比数列定义,考查了对数的运算性质,考查了等比数列的通项公式,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)当时,没有极值点,当时,有一个极小值点.(2)【解析】试题分析:(1),分,讨论,当时,对,,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设,所以,设,则,且是增函数,所以。所以分和k>1讨论。试题解析:(Ⅰ)因为,所以,当时,对,,所以在是减函数,此时函数不存在极值,所以函数没有极值点;当时,,令,解得,若,则,所以在上是减函数,若,则,所以在上是增函数,当时,取得极小值为,函数有且仅有一个极小值点,所以当时,没有极值点,当时,有一个极小值点.(Ⅱ)命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.若,则设,所以,设,则,且是增函数,所以当时,,所以在上是增函数,,即,所以在上是增函数,所以,即在上恒成立.当时,因为在是增函数,因为,,所以在上存在唯一零点,当时,,在上单调递减,从而,即,所以在上单调递减,所以当时,,即.所以不等式在区间内有解综上所述,实数的取值范围为.18.(Ⅰ)C的方程为,焦点F的坐标为(1,0);(Ⅱ)1【解析】
(Ⅰ)根据抛物线定义求出p,即可求C的方程及焦点F的坐标;
(Ⅱ)设点A(x1,y1),B(x1,y1),由已知得Q(−1,−1),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)−1(k≠0),与抛物线联立可得ky1-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|•|NF|的值.【详解】(Ⅰ)由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(−1,−1),由题意直线AB斜率存在且不为0.设直线AB的方程为y=k(x+1)−1(k≠0).由得,则,.因为点A,B在抛物线C上,所以,.因为PF⊥x轴,所以,所以|MF|⋅|NF|的值为1.本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.19.(1)或;(2).【解析】
(1)通过讨论的范围,将绝对值符号去掉,转化为求不等式组的解集,之后取并集,得到原不等式的解集;(2)将函数零点问题转化为曲线交点问题解决,数形结合得到结果.【详解】(1)有题不等式可化为,当时,原不等式可化为,解得;当时,原不等式可化为,解得,不满足,舍去;当时,原不等式可化为,解得,所以不等式的解集为.(2)因为,所以若函数存在零点则可转化为函数与的图像存在交点,函数在上单调增,在上单调递减,且.数形结合可知.该题考查的是有关不等式的问题,涉及到的知识点有分类讨论求绝对值不等式的解集,将零点问题转化为曲线交点的问题来解决,数形结合思想的应用,属于简单题目.20.(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接,由比例可得∥,进而得线面平行;(Ⅱ)过点作的垂线,建立空间直角坐标系,不妨设,则求得平面的法向量为,设平面的法向量为,由求二面角余弦即可.试题解析:(Ⅰ)证明:连接,梯形,,易知:;又,则∥;平面,平面,可得:∥平面;(Ⅱ)侧面是梯形,,,,则为二面角的平面角,;均为正三角形,在平面内,过点作的垂线,如图建立空间直角坐标系,不妨设,则,故点,;设平面的法向量为,则有:;设平面的法向量为,则有:;,故平面与平面所成的锐二面角的余弦值为.21.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中风病恢复期中医诊疗方案
- 公司员工工资制度方案
- xx中学防疫防控物资储备方案
- 教师住房分配方案
- 小学“班级文化墙”评比活动方案
- 建设项目设计管理方案
- 2024-2030年空气净化设备行业市场发展分析及前景趋势与投融资战略研究报告
- 2024-2030年眼科镜片涂布设备行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年直接面向消费者的测试行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年皮带行业风险投资态势及投融资策略指引报告
- 上海市普陀区2024-2025学年六年级(五四学制)上学期期中语文试题
- 采伐树木合同模板
- 培训师破冰游戏大全课件
- 期中测试卷-2024-2025学年统编版语文三年级上册
- 《气能破岩作业技术规程》征求意见稿编制说明
- 消防救生照明线标准解析
- GB/T 24304-2024动植物油脂茴香胺值的测定
- 第一单元 史前时期:原始社会与中华文明的起源(复习课件)
- 医院检验科实验室生物安全程序文件SOP
- 92式手枪基础训练
- 封条模板A4直接打印版
评论
0/150
提交评论