版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年山东师范大学附中高三年级4月摸底考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的一条切线为,则的最小值为()A. B. C. D.2.已知是定义在上的奇函数,且当时,.若,则的解集是()A. B.C. D.3.若(),,则()A.0或2 B.0 C.1或2 D.14.公差不为零的等差数列{an}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{an}的公差等于()A.1 B.2 C.3 D.45.函数的部分图象如图所示,则()A.6 B.5 C.4 D.36.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或47.执行如图所示的程序框图,则输出的值为()A. B. C. D.8.已知函数在区间有三个零点,,,且,若,则的最小正周期为()A. B. C. D.9.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.10.记等差数列的公差为,前项和为.若,,则()A. B. C. D.11.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()A.300, B.300, C.60, D.60,12.已知函数,则不等式的解集是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.14.函数的定义域是___________.15.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.16.已知等比数列的各项都是正数,且成等差数列,则=__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.18.(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.19.(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.20.(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.21.(12分)已知椭圆的左焦点坐标为,,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.(1)求椭圆的方程;(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.22.(10分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.2.B【解析】
利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.3.A【解析】
利用复数的模的运算列方程,解方程求得的值.【详解】由于(),,所以,解得或.故选:A本小题主要考查复数模的运算,属于基础题.4.B【解析】
设数列的公差为.由,成等比数列,列关于的方程组,即求公差.【详解】设数列的公差为,①.成等比数列,②,解①②可得.故选:.本题考查等差数列基本量的计算,属于基础题.5.A【解析】
根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令=0,即=kπ,k=0时解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故选:A.本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.6.C【解析】
对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.7.B【解析】
列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.8.C【解析】
根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,,,当时,,∴由对称轴可知,满足,即.同理,满足,即,∴,,所以最小正周期为:.故选:C.本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.9.D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.10.C【解析】
由,和,可求得,从而求得和,再验证选项.【详解】因为,,所以解得,所以,所以,,,故选:C.本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.11.B【解析】
由频率分布直方图求出在此路段上汽车行驶速度在区间的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过的频率.【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间的频率为,∴在此路段上汽车行驶速度在区间的车辆数为:,行驶速度超过的频率为:.故选:B.本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.12.B【解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,,单调递增,∵,故不等式的解集等价于不等式的解集..∴.故选:B.本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.14.【解析】
由于偶次根式中被开方数非负,对数的真数要大于零,然后解不等式组可得答案.【详解】解:由题意得,,解得,所以,故答案为:此题考查函数定义域的求法,属于基础题.15.【解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.16.【解析】
根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.【详解】等比数列的各项都是正数,且成等差数列,则,由等比数列通项公式可知,所以,解得或(舍),所以由对数式运算性质可得,故答案为:.本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)分布见解析,期望为;(2).【解析】
(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60=20×3=40+10+10,所以.本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.18.(1)(2)①生产线上挽回的损失较多.②见解析【解析】
(1)由题意得到关于的不等式,求解不等式得到的取值范围即可确定其最小值;(2)①.由题意利用二项分布的期望公式和数学期望的性质给出结论即可;②.由题意首先确定X可能的取值,然后求得相应的概率值可得分布列,最后由分布列可得利润的期望值.【详解】(1)设从,生产线上各抽检一件产品,至少有一件合格为事件,设从,生产线上抽到合格品分别为事件,,则,互为独立事件由已知有,则解得,则的最小值(2)由(1)知,生产线的合格率分别为和,即不合格率分别为和.①设从,生产线上各抽检件产品,抽到不合格产品件数分别为,,则有,,所以,生产线上挽回损失的平均数分别为:,所以生产线上挽回的损失较多.②由已知得的可能取值为,,,用样本估计总体,则有,,所以的分布列为所以(元)故估算估算该厂产量件时利润的期望值为(元)本题主要考查概率公式的应用,二项分布的性质与方差的求解,离散型随机变量及其分布列的求解等知识,意在考查学生的转化能力和计算求解能力.19.(1);(2),理由见解析.【解析】
(1)求出椭圆的上、下焦点坐标,利用椭圆的定义求得的值,进而可求得的值,由此可得出椭圆的方程;(2)设点的坐标为,求出直线的方程,求出点的坐标,由此计算出直线和的斜率,可计算出的值,进而可求得的值,即可得出结论.【详解】(1)由题意可知,椭圆的上焦点为、,由椭圆的定义可得,可得,,因此,所求椭圆的方程为;(2)设点的坐标为,则,得,直线的斜率为,所以,直线的方程为,联立,解得,即点,直线的斜率为,直线的斜率为,所以,,,因此,.本题考查椭圆方程的求解,同时也考查了椭圆中定值问题的求解,考查计算能力,属于中等题.20.(1)(2)是,【解析】
(1)设,根据条件可求出的坐标,再利用在椭圆上,代入椭圆方程求出即可;(2)设运用勾股定理和点满足椭圆方程,求出,,再利用焦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 导购员合同协议模板
- 玫瑰花加盟店购销合同
- 二零二四年文化演出经纪人合同
- 新毕业职业规划
- 新加坡的护理礼仪
- 二零二四年度广告发布合同广告内容审核与效果评估
- 二零二四年度食品加工设备采购与维护协议
- 二零二四年度进出口贸易担保合同
- 房屋漏水维修合同协议书样本
- 二零二四年度高端精密仪器进口与技术引进合同
- 《钢结构住宅设计规范》
- 自动监测数据标记及电子督办规则考试题
- (完整版)连词和并列句-课件
- 居住区景观案例分析(行业经验)
- 山体爆破施工方案(审核版)
- 国家电网有限公司十八项电网重大反事故措施修订版-2018版
- 战严寒、磨意志1130班会
- 普通话培训教案
- 基坑支护(护坡)工程冬季施工方案
- 英语六个简单句基本句型讲解(课堂PPT)
- 江苏省房屋建筑和市政基础设施工程施工招标评标办法
评论
0/150
提交评论