2024-2025学年绵阳中学高三高考第一次模拟考试数学试题含解析_第1页
2024-2025学年绵阳中学高三高考第一次模拟考试数学试题含解析_第2页
2024-2025学年绵阳中学高三高考第一次模拟考试数学试题含解析_第3页
2024-2025学年绵阳中学高三高考第一次模拟考试数学试题含解析_第4页
2024-2025学年绵阳中学高三高考第一次模拟考试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年绵阳中学高三高考第一次模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={x|x<1},B={x|},则A. B.C. D.2.已知,且,则的值为()A. B. C. D.3.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.4.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()A.3 B.4 C.5 D.65.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A. B.4 C.2 D.6.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i7.设函数的定义域为,命题:,的否定是()A., B.,C., D.,8.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A. B. C. D.9.在中,,,,点满足,则等于()A.10 B.9 C.8 D.710.已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是()A. B. C. D.11.在函数:①;②;③;④中,最小正周期为的所有函数为()A.①②③ B.①③④ C.②④ D.①③12.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列是各项均为正数的等比数列,若,则的最小值为________.14.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种.15.已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_____.16.已知是同一球面上的四个点,其中平面,是正三角形,,则该球的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.18.(12分)已知,,,,证明:(1);(2).19.(12分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.20.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82821.(12分)若数列前n项和为,且满足(t为常数,且)(1)求数列的通项公式:(2)设,且数列为等比数列,令,.求证:.22.(10分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】∵集合∴∵集合∴,故选A2.A【解析】

由及得到、,进一步得到,再利用两角差的正切公式计算即可.【详解】因为,所以,又,所以,,所以.故选:A.本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.3.D【解析】

集合.为自然数集,由此能求出结果.【详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.4.A【解析】

根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【详解】由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.5.A【解析】

由已知得,,由已知比值得,再利用双曲线的定义可用表示出,,用勾股定理得出的等式,从而得离心率.【详解】.又,可令,则.设,得,即,解得,∴,,由得,,,该双曲线的离心率.故选:A.本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系.6.B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.7.D【解析】

根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.8.B【解析】

先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.9.D【解析】

利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==本题考查了向量的数量积运算,关键是利用基向量表示所求向量.10.B【解析】

构造函数(),求导可得在上单调递增,则,问题转化为,即至少有2个正整数解,构造函数,,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,,则,当时,单调递增;当时,单调递增.,整理得.故选:B.本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.11.A【解析】逐一考查所给的函数:,该函数为偶函数,周期;将函数图象x轴下方的图象向上翻折即可得到的图象,该函数的周期为;函数的最小正周期为;函数的最小正周期为;综上可得最小正周期为的所有函数为①②③.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.12.B【解析】

求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.40【解析】

设等比数列的公比为,根据,可得,因为,根据均值不等式,即可求得答案.【详解】设等比数列的公比为,,,等比数列的各项为正数,,,当且仅当,即时,取得最小值.故答案为:.本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.14.1344【解析】

分四种情况讨论即可【详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有:所以共有1344种故答案为:1344考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.15.2.【解析】

由双曲线的一条渐近线为,解得.求出双曲线的右焦点,利用点到直线的距离公式求解即可.【详解】双曲线的一条渐近线为解得:双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题.16.【解析】

求得等边三角形的外接圆半径,利用勾股定理求得三棱锥外接球的半径,进而求得外接球的表面积.【详解】设是等边三角形的外心,则球心在其正上方处.设,由正弦定理得.所以得三棱锥外接球的半径,所以外接球的表面积为.故答案为:本小题主要考查几何体外接球表面积的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)根据,得到函数,然后,直接求解的值;(2)首先,化简函数,然后,结合周期公式,得到,再结合,及正弦函数的性质解答即可.【详解】(1)因为,所以(2)因为即因为,所以所以因为所以所以当时,.当时,(最大值)当时,在是增函数,在是减函数.的值域是.本题主要考查了简单角的三角函数值的求解方法,两角和与差的正弦、余弦公式,三角函数的图象与性质等知识,考查了运算求解能力,属于中档题.18.(1)证明见解析(2)证明见解析【解析】

(1)先由基本不等式可得,而,即得证;(2)首先推导出,再利用,展开即可得证.【详解】证明:(1),,,(当且仅当时取等号).(2),,,,,,,.本题考查不等式的证明,考查基本不等式的运用,考查逻辑推理能力,属于中档题.19.(1);(2).【解析】

(1)根据题意,求得,,因而得出,利用降幂公式和二倍角的正弦公式化简函数,最后利用,求出的最小正周期;(2)由(1)得,再利用整体代入求出函数的值域.【详解】(1)因为,,所以,,所以函数的最小正周期为.(2)因为,所以,所以,故函数在区间上的值域为.本题考查正弦型函数的周期和值域,运用到向量的坐标运算、降幂公式和二倍角的正弦公式,考查化简和计算能力.20.(1)分层抽样,简单随机抽样(抽签亦可)(2)有(3)分布列见解析,【解析】

(1)根据题意可以选用分层抽样法,或者简单随机抽样法.(2)由已知条件代入公式计算出结果,进而可以得到结果.(3)由已知条件计算出的分布列,进而求出的数学期望.【详解】(1)分层抽样,简单随机抽样(抽签亦可).(2)将列联表中的数据代入公式计算得所以有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”.(3)以频率作为概率,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为.可取0,1,2,3,计算可得的分布列为:0123本题考查了运用数学模型解答实际生活问题,运用合理的抽样方法,计算以及数据的分布列和数学期望,需要正确运用公式进行求解,本题属于常考题型,需要掌握解题方法.21.(1)(2)详见解析【解析】

(1)利用可得的递推关系,从而可求其通项.(2)由为等比数列可得,从而可得的通项,利用错位相减法可得的前项和,利用不等式的性质可证.【详解】(1)由题意,得:(t为常数,且),当时,得,得.由,故,,故.(2)由,由为等比数列可知:,又,故,化简得到,所以或(舍).所以,,则.设的前n项和为.则,相减可得数列的通项与前项和的关系式,我们常利用这个关系式实现与之间的相互转化.数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论