2024-2025学年安徽省江淮十校高三下学期第一次质检数学试题含解析_第1页
2024-2025学年安徽省江淮十校高三下学期第一次质检数学试题含解析_第2页
2024-2025学年安徽省江淮十校高三下学期第一次质检数学试题含解析_第3页
2024-2025学年安徽省江淮十校高三下学期第一次质检数学试题含解析_第4页
2024-2025学年安徽省江淮十校高三下学期第一次质检数学试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年安徽省江淮十校高三下学期第一次质检数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为()A. B.C. D.2.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为()A. B. C. D.3.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.4.已知锐角满足则()A. B. C. D.5.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π6.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.4C. D.57.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.18.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为()A. B. C. D.9.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.10.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.11.已知复数,满足,则()A.1 B. C. D.512.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).14.若奇函数满足,为R上的单调函数,对任意实数都有,当时,,则________.15.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆(an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______16.若函数,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.18.(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A、B+、B、C+、C、D+、D、E共8个等级。参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科C+等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属C+等级.而C+等级的转换分区间为61~70,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为x,69-6565-58=70-x四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布ξ∼N(60,12(i)若小明同学在这次考试中物理原始分为84分,等级为B+,其所在原始分分布区间为82~93,求小明转换后的物理成绩;(ii)求物理原始分在区间(72,84)的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记X表示这4人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.(附:若随机变量ξ∼N(μ,σ2),则Pμ-σ<ξ<μ+σ=0.68219.(12分)如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.(1)求证:平面.(2)求二面角的余弦值.20.(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.21.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.22.(10分)如图,在四棱锥中底面是菱形,,是边长为的正三角形,,为线段的中点.求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.2.A【解析】

设的中点为O先求出外接圆的半径,设,利用平面ABC,得,在及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题3.A【解析】

令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.4.C【解析】

利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.5.C【解析】

两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.6.B【解析】

还原几何体的直观图,可将此三棱锥放入长方体中,利用体积分割求解即可.【详解】如图,三棱锥的直观图为,体积.故选:B.本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.7.B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.8.B【解析】

根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【详解】.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.9.B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.10.D【解析】

根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.11.A【解析】

首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A本题考查了复数求模问题,考查复数的除法运算,属于基础题.12.D【解析】

根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,,,因此该双曲线的离心率.本题考查了双曲线定义及双曲线的离心率,考查了运算能力.二、填空题:本题共4小题,每小题5分,共20分。13.192【解析】

根据题意,分步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.【详解】根据题意,分步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.14.【解析】

根据可得,函数是以为周期的函数,令,可求,从而可得,代入解析式即可求解.【详解】令,则,由,则,所以,解得,所以,由时,,所以时,;由,所以,所以函数是以为周期的函数,,又函数为奇函数,所以.故答案为:本题主要考查了换元法求函数解析式、函数的奇偶性、周期性的应用,属于中档题.15.【解析】

第一空:将圆与联立,利用计算即可;第二空:找到两外切的圆的圆心与半径的关系,再将与联立,得到,与结合可得为等差数列,进而可得.【详解】当r1=1时,圆,与联立消去得,则,解得;由图可知当时,①,将与联立消去得,则,整理得,代入①得,整理得,则.故答案为:;.本题是抛物线与圆的关系背景下的数列题,关键是找到圆心和半径的关系,建立递推式,由递推式求通项公式,综合性较强,是一道难度较大的题目.16.【解析】

根据题意,由函数的解析式求出的值,进而计算可得答案.【详解】根据题意,函数,则,则;故答案为:.本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)单调减区间为,单调增区间为;(2)详见解析;(3).【解析】

试题分析:(1)对函数求导后,利用导数和单调性的关系,可求得函数的单调区间.(2)构造函数,利用导数求得函数在上递减,且,则,故原不等式成立.(3)同(2)构造函数,对分成三类,讨论函数的单调性、极值和最值,由此求得的取值范围.试题解析:(1),当时,.解得.当时,解得.所以单调减区间为,单调增区间为.(2)设,当时,由题意,当时,恒成立.,∴当时,恒成立,单调递减.又,∴当时,恒成立,即.∴对于,恒成立.(3)因为.由(2)知,当时,恒成立,即对于,,不存在满足条件的;当时,对于,,此时.∴,即恒成立,不存在满足条件的;当时,令,可知与符号相同,当时,,,单调递减.∴当时,,即恒成立.综上,的取值范围为.点睛:本题主要考查导数和单调区间,导数与不等式的证明,导数与恒成立问题的求解方法.第一问求函数的单调区间,这是导数问题的基本题型,也是基本功,先求定义域,然后求导,要注意通分和因式分解.二、三两问一个是恒成立问题,一个是存在性问题,要注意取值是最大值还是最小值.18.(1)(i)83.;(ii)272.(2)见解析.【解析】

(1)根据原始分数分布区间及转换分区间,结合所给示例,即可求得小明转换后的物理成绩;根据正态分布满足N60,122(2)根据各等级人数所占比例可知在区间61,80内的概率为25,由二项分布即可求得X【详解】(1)(i)设小明转换后的物理等级分为x,93-8484-82求得x≈82.64.小明转换后的物理成绩为83分;(ii)因为物理考试原始分基本服从正态分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在区间72,84的人数为2000×0.136=272(人);(2)由题意得,随机抽取1人,其等级成绩在区间61,80内的概率为25随机抽取4人,则X~B4,PX=0=3PX=2=CPX=4X的分布列为X01234P812162169616数学期望EX本题考查了统计的综合应用,正态分布下求某区间概率的方法,分布列及数学期望的求法,文字多,数据多,需要细心的分析和理解,属于中档题。19.(1)证明见解析(2)【解析】

(1)由等腰梯形的性质可证得,由射影可得平面,进而求证;(2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,分别求得平面与平面的法向量,再利用数量积求解即可.【详解】(1)在等腰梯形中,点E在线段上,且,点E为上靠近C点的四等分点,,,,,点P在底面上的射影为的中点G,连接,平面,平面,.又,平面,平面,平面.(2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,如图所示,由(1)易知,,,又,,,为等边三角形,,则,,,,,,,,,设平面的法向量为,则,即,令,则,,,设平面的法向量为,则,即,令,则,,,设平面与平面的夹角为θ,则二面角的余弦值为.本题考查线面垂直的证明,考查空间向量法求二面角,考查运算能力与空间想象能力.20.(1)(2)【解析】

(1)因为,可得,即可求得答案;(2)分别设、的斜率为和,切点,,可得过点的抛物线的切线方程为:,联立直线方程和抛物线方程,得到关于一元二次方程,根据,求得,,进而求得切点,坐标,根据两点间距离公式求得,根据点到直线距离公式求得点到切线的距离,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论