2022年江苏省辅仁高级中学高三第三次测评数学试卷含解析_第1页
2022年江苏省辅仁高级中学高三第三次测评数学试卷含解析_第2页
2022年江苏省辅仁高级中学高三第三次测评数学试卷含解析_第3页
2022年江苏省辅仁高级中学高三第三次测评数学试卷含解析_第4页
2022年江苏省辅仁高级中学高三第三次测评数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为()A. B. C. D.2.若非零实数、满足,则下列式子一定正确的是()A. B.C. D.3.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为()A. B.C. D.4.已知,,则等于().A. B. C. D.5.已知向量,则向量在向量方向上的投影为()A. B. C. D.6.若,则下列不等式不能成立的是()A. B. C. D.7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-8.已知复数,则()A. B. C. D.29.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位10.已知实数,满足约束条件,则的取值范围是()A. B. C. D.11.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.12.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本题共4小题,每小题5分,共20分。13.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.14.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.15.“六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为________.16.已知,为正实数,且,则的最小值为________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求不等式的解集;(2)若函数的图象与轴恰好围成一个直角三角形,求的值.18.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.20.(12分)选修4-5:不等式选讲已知函数的最大值为3,其中.(1)求的值;(2)若,,,求证:21.(12分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).(1)求曲线的极坐标方程;(2)若曲线与相交于、、三点,求线段的长.22.(10分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

根据循环语句,输入,执行循环语句即可计算出结果.【详解】输入,由题意执行循环结构程序框图,可得:第次循环:,,不满足判断条件;第次循环:,,不满足判断条件;第次循环:,,满足判断条件;输出结果.故选:【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.2.C【解析】

令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.【详解】令,则,,,,,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.3.C【解析】

将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.4.B【解析】

由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.【详解】由题意得,又,所以,结合解得,所以,故选B.【点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.5.A【解析】

投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.6.B【解析】

根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.7.C【解析】

直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.8.C【解析】

根据复数模的性质即可求解.【详解】,,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.9.D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D10.B【解析】

画出可行域,根据可行域上的点到原点距离,求得的取值范围.【详解】由约束条件作出可行域是由,,三点所围成的三角形及其内部,如图中阴影部分,而可理解为可行域内的点到原点距离的平方,显然原点到所在的直线的距离是可行域内的点到原点距离的最小值,此时,点到原点的距离是可行域内的点到原点距离的最大值,此时.所以的取值范围是.故选:B【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识.11.D【解析】

试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.12.A【解析】

根据函数图像平移原则,即可容易求得结果.【详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【点睛】本题考查函数图像平移前后解析式的变化,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解【详解】设圆柱的轴截面的边长为x,则由,得,∴.故答案为:【点睛】本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.14.【解析】

根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值.【详解】由图可知:,所以,又因为,所以,所以.故答案为:.【点睛】本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有.15.【解析】

分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列.【详解】第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御”两节讲座必须相邻的不同安排种数为.故答案为:1.【点睛】本题考查排列的应用,排列组合问题中,遵循特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法.16.【解析】

由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)当时,,由可得,(所以,解得,所以不等式的解集为.(2)由题可得,因为函数的图象与轴恰好围成一个直角三角形,所以,解得,当时,,函数的图象与轴没有交点,不符合题意;当时,,函数的图象与轴恰好围成一个直角三角形,符合题意.综上,可得.18.(1)证明见解析(2)【解析】

(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,,,所以,,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为【点睛】本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.19.(1),(2)最大值,最小值【解析】

(1)由曲线的参数方程,得两式平方相加求解,根据直线的极坐标方程,展开有,再根据求解.(2)因为曲线C是一个半圆,利用数形结合,圆心到直线的距离减半径即为最小值,最大值点由图可知.【详解】(1)因为曲线的参数方程为所以两式平方相加得:因为直线的极坐标方程为.所以所以即(2)如图所示:圆心C到直线的距离为:所以圆上的点到直线的最小值为:则点M(2,0)到直线的距离为最大值:【点睛】本题主要考查参数方程,普通方程及极坐标方程的转化和直线与圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.20.(1)(2)见解析【解析】

(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab≥1,再构造函数利用导数判断单调性求出最小值可证.【详解】(1)∵,∴.∴当时,取得最大值.∴.(2)由(Ⅰ),得,.∵,当且仅当时等号成立,∴.令,.则在上单调递减.∴.∴当时,.∴.【点睛】本题考查了绝对值不等式的解法,属中档题.本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.21.(1)();(2).【解析】

(1)化简得到直线方程为,再利用极坐标公式计算得到答案.(2)联立方程计算得到,,计算得到答案.【详解】(1)由消得,即,是过原点且倾斜角为的直线,∴的极坐标方程为().(2)由得,∴,由得∴,∴.【点睛】本题考查了参数方程,极坐标方程,意在考查学生的计算能力和应用能力.22.(1)见解析(2)【解析】

(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论