新高考数学二轮复习热点3-2 三角函数的图象与性质(10题型+满分技巧+限时检测)(原卷版)_第1页
新高考数学二轮复习热点3-2 三角函数的图象与性质(10题型+满分技巧+限时检测)(原卷版)_第2页
新高考数学二轮复习热点3-2 三角函数的图象与性质(10题型+满分技巧+限时检测)(原卷版)_第3页
新高考数学二轮复习热点3-2 三角函数的图象与性质(10题型+满分技巧+限时检测)(原卷版)_第4页
新高考数学二轮复习热点3-2 三角函数的图象与性质(10题型+满分技巧+限时检测)(原卷版)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

热点3-2三角函数的图象与性质三角函数的图象与性质是高考的热点,函数SKIPIF1<0的图象变换以及三角函数的周期性、对称性、单调性之间逻辑关系则是重心。随着新高考改革的推进,更加注重对以周期性为核心的三大性质之间的逻辑关系的考查,要求考生能用几何直观和代数运算来研究三角函数。高考中的相关试题多以选择题、填空题的形式考查,难度中等或偏下。【题型1三角函数的识图问题】满分技巧图象辨识题的主要解题思想是“对比选项,找寻差异,排除筛选”(1)求函数定义域(若各选项定义域相同,则无需求解);(2)判断奇偶性(若各选项奇偶性相同,则无需判断);(3)找特殊值:=1\*GB3①对比各选项,计算横纵坐标标记的数值;=2\*GB3②对比各选项,函数值符号的差别,自主取值(必要时可取极限判断符号);(4)判断单调性:可取特殊值判断单调性.【例1】(2024·湖南长沙·统考一模)下图是函数SKIPIF1<0的部分图象,则该函数的解析式可以是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式1-1】(2024·天津宁河·高三统考期末)函数SKIPIF1<0在区间SKIPIF1<0上的图象大致是()A.B.C.D.【变式1-2】(2024·陕西宝鸡·统考一模)函数SKIPIF1<0的部分图像大致为()A.B.C.D.【变式1-3】(2024·河北廊坊·高三文安县第一中学校联考期末)现有四个函数:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0的图象(部分)如图,则按照从左到如图像对应的函数序号正确的一组是()A.①③②④B.①④③②C.③①②④D.③①④②【变式1-4】(2023·福建泉州·高三校考阶段练习)函数SKIPIF1<0的图象大致为()A.B.C.D.【题型2由三角函数的图象求解析式】满分技巧已知SKIPIF1<0的部分图象求其解析式时,SKIPIF1<0比较容易看图得出,困难的是求待定系数SKIPIF1<0和SKIPIF1<0,常用如下两种方法:(1)由SKIPIF1<0即可求出SKIPIF1<0;确定SKIPIF1<0时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标SKIPIF1<0,则令SKIPIF1<0(或SKIPIF1<0),即可求出SKIPIF1<0;(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出SKIPIF1<0和SKIPIF1<0,若对SKIPIF1<0,SKIPIF1<0的符号或对SKIPIF1<0的范围有要求,可用诱导公式变换使其符合要求。【例2】(2023·全国·高三校联考阶段练习)已知函数SKIPIF1<0的部分图象如图所示,则SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式2-1】(2024·四川攀枝花·统考二模)函数SKIPIF1<0的部分图象如图所示,则将SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度后,得到的函数图象解析式为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式2-2】(2024·广东广州·华南师大附中校考一模)函数SKIPIF1<0的部分图像如图所示,则SKIPIF1<0,SKIPIF1<0的值分别是()A.2,SKIPIF1<0B.2,SKIPIF1<0C.2,SKIPIF1<0D.4,SKIPIF1<0【变式2-3】(2024·辽宁沈阳·高三沈阳实验中学校联考期末)函数SKIPIF1<0的部分图象如图,则()A.SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,SKIPIF1<0【变式2-4】(2024·河南信阳·统考二模)(多选)已知函数SKIPIF1<0的图象如图所示,SKIPIF1<0,SKIPIF1<0是直线SKIPIF1<0与曲线SKIPIF1<0的两个交点,且SKIPIF1<0,则下列选项正确的是()A.SKIPIF1<0的值为3B.SKIPIF1<0的值为2C.SKIPIF1<0的值可以为SKIPIF1<0D.SKIPIF1<0的值可以为SKIPIF1<0【题型3三角函数的图象变换问题】满分技巧函数y=Asin(ωx+φ)+k(A>0,ω>0)中,参数A,ω,φ,k的变化引起图象的变换:(1)A的变化引起图象中振幅的变换,即纵向伸缩变换;(2)ω的变化引起周期的变换,即横向伸缩变换;(3)φ的变化引起左右平移变换,k的变化引起上下平移变换.图象平移遵循的规律为:“左加右减,上加下减”.【注意】(1)平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx加减多少值;(2)余弦型、正切型函数的图象变换过程与正弦型函数的图象变换过程相同。【例3】(2023·湖南衡阳·衡阳市八中校考一模)为了得到函数SKIPIF1<0的图象,只需把函数SKIPIF1<0的图象上所有的点的()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的SKIPIF1<0倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的SKIPIF1<0倍,横坐标不变【变式3-1】(2024·广东广州·高三执信中学校考阶段练习)将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度,得到函数SKIPIF1<0的图象,则SKIPIF1<0的最小值为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式3-2】(2024·福建·高三校联考期末)已知函数SKIPIF1<0,要得到函数SKIPIF1<0的图象,只需将SKIPIF1<0的图象()A.向左平移SKIPIF1<0个单位长度B.向左平移SKIPIF1<0个单位长度C.向右平移SKIPIF1<0个单位长度D.向右平移SKIPIF1<0个单位长度【变式3-3】(2024·天津和平·高三统考期末)已知函数SKIPIF1<0,函数SKIPIF1<0图象的一条对称轴与一个对称中心的最小距离为SKIPIF1<0,将SKIPIF1<0图象上所有的点向左平移SKIPIF1<0个单位长度,再将所得图象上所有点的横坐标缩短到原来的SKIPIF1<0(纵坐标不变),得到的图象所表示的函数为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式3-4】(2023·湖南长沙·高三长郡中学校考阶段练习)要得到函数SKIPIF1<0的图象,可以将函数SKIPIF1<0的图象()A.向右平移SKIPIF1<0个单位长度B.向左平移SKIPIF1<0个单位长度C.向右平移SKIPIF1<0个单位长度D.向左平移SKIPIF1<0个单位长度【题型4三角函数的单调性及应用】满分技巧1、求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u(或t),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦和正切曲线,结合图象求它的单调区间求解三角函数的单调区间时,若x的系数为负,应先化为正,同时切莫忽视函数自身的定义域.2、已知单调区间求参数范围的3种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过eq\f(1,4)周期列不等式(组)求解。【例4】(2023·北京海淀·高三北大附中校考阶段练习)已知函数SKIPIF1<0,则()A.SKIPIF1<0在SKIPIF1<0单调递减B.SKIPIF1<0在SKIPIF1<0单调递增C.SKIPIF1<0在SKIPIF1<0单调递减D.SKIPIF1<0在SKIPIF1<0单调递增【变式4-1】(2024·浙江温州·温州中学校考一模)已知函数SKIPIF1<0,其中SKIPIF1<0.若SKIPIF1<0在区间SKIPIF1<0上单调递增,则SKIPIF1<0的取值范围是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式4-2】(2024·山东威海·高三统考期末)已知函数SKIPIF1<0在SKIPIF1<0上是增函数,则SKIPIF1<0的取值范围是.【变式4-3】(2024·广东·高三广东实验中学校联考期末)已知函数SKIPIF1<0的最小正周期为SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上单调递减,在SKIPIF1<0上单调递增,则实数SKIPIF1<0的取值范围是.【变式4-4】(2024·湖南邵阳·统考一模)已知函数SKIPIF1<0在SKIPIF1<0上单调递增,在SKIPIF1<0上单调递减,则实数SKIPIF1<0的取值范围为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【题型5三角函数的周期性及应用】满分技巧周期的计算公式:函数的周期为,函数的周期为求解.【例5】(2023·河南周口·高三校联考阶段练习)下列函数中,以SKIPIF1<0为周期的函数是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式5-1】(2023·重庆·重庆市石柱中学校校联考一模)函数SKIPIF1<0的最小正周期为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式5-2】(2023·湖北荆州·高三沙市中学校考阶段练习)函数SKIPIF1<0的最小正周期为.【变式5-3】(2024·广东汕头·金山中学校考模拟预测)“SKIPIF1<0的最小正周期为SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要条件B.必要不充分条C.充分必要条件D.既不充分也不必要条件【变式5-4】(2024·山东德州·高三统考期末)设函数SKIPIF1<0在SKIPIF1<0的图象大致如图,则SKIPIF1<0的最小正周期为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【题型6三角函数的奇偶性及应用】满分技巧与三角函数奇偶性相关的结论三角函数中,判断奇偶性的前提是定义域关于原点对称,奇函数一般可化为y=Asinωx或y=Atanωx的形式,而偶函数一般可化为y=Acosωx+b的形式.常见的结论有:(1)若y=Asin(ωx+φ)为偶函数,则有φ=kπ+eq\f(π,2)(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=Acos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+eq\f(π,2)(k∈Z).(3)若y=Atan(ωx+φ)为奇函数,则有φ=kπ(k∈Z).【例6】(2023·陕西西安·统考一模)已知函数SKIPIF1<0,则“SKIPIF1<0”是“SKIPIF1<0为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【变式6-1】(2024·河南·模拟预测)已知函数SKIPIF1<0,则“SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【变式6-2】(2024·广东广州·广州六中校考三模)若函数SKIPIF1<0为奇函数,则SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式6-3】(2024·河南周口·高三统考阶段练习)已知函数SKIPIF1<0为偶函数,则SKIPIF1<0()A.-2B.-1C.0D.2【变式6-4】(2023·广东广州·高三统考阶段练习)若SKIPIF1<0为奇函数,则实数SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式6-5】(2023·北京海淀·高三专题练习)函数SKIPIF1<0,则()A.若SKIPIF1<0,则SKIPIF1<0为奇函数B.若SKIPIF1<0,则SKIPIF1<0为偶函数C.若SKIPIF1<0,则SKIPIF1<0为偶函数D.若SKIPIF1<0,则SKIPIF1<0为奇函数【题型7三角函数的对称性及应用】满分技巧三角函数对称性问题的2种求解方法1、定义法:正(余)弦函数的对称轴是过函数的最高点或最低点且垂直于x轴的直线,对称中心是图象与x轴的交点,即函数的零点;2、公式法:(1)函数y=Asin(ωx+φ)的对称轴为x=eq\f(kπ,ω)-eq\f(φ,ω)+eq\f(π,2ω),对称中心为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(kπ,ω)-\f(φ,ω),0));(2)函数y=Acos(ωx+φ)的对称轴为x=eq\f(kπ,ω)-eq\f(φ,ω),对称中心为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(kπ,ω)-\f(φ,ω)+\f(π,2ω),0));(3)函数y=Atan(ωx+φ)的对称中心为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(kπ,2ω)-\f(φ,ω),0)).上述k∈Z【例7】(2024·重庆·高三统考期末)(多选)下列函数中,其图象关于点SKIPIF1<0对称的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式7-1】(2024·山东菏泽·高三山东省鄄城县第一中学校考阶段练习)“函数SKIPIF1<0的图象关于SKIPIF1<0对称”是“SKIPIF1<0,SKIPIF1<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【变式7-2】(2024·山东青岛·高三青岛二中校考期末)已知函数SKIPIF1<0的图像关于原点中心对称,则SKIPIF1<0的最小值为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式7-3】(2022·全国·高三校联考阶段练习)已知SKIPIF1<0是函数SKIPIF1<0的一条对称轴,且SKIPIF1<0,则SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0D.SKIPIF1<0或SKIPIF1<0【变式7-4】(2024·陕西安康·安康中学校联考模拟预测)若函数SKIPIF1<0的图象在SKIPIF1<0内有且仅有两条对称轴,一个对称中心,则实数SKIPIF1<0的最大值是.【题型8三角函数的最值问题】满分技巧三角函数值域或最值的3种求法1、直接法:形如y=asinx+k或y=acosx+k的三角函数,直接利用sinx,cosx的值域求出;2、化一法:形如y=asinx+bcosx+k的三角函数,化为y=Asin(ωx+φ)+k的形式,确定ωx+φ的范围,根据正弦函数单调性写出函数的值域(最值);3、换元法:(1)形如y=asin2x+bsinx+k的三角函数,可先设sinx=t,化为关于t的二次函数求值域(最值);(2)形如y=asinxcosx+b(sinx±cosx)+c的三角函数,可先设t=sinx±cosx,化为关于t的二次函数求值域(最值)【例8】(2022·河南·高三校联考专题练习)函数SKIPIF1<0的最小值为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式8-1】(2024·江苏苏州·高三统考期末)已知函数SKIPIF1<0的最小正周期为SKIPIF1<0,则SKIPIF1<0在区间SKIPIF1<0上的最大值为()A.SKIPIF1<0B.1C.SKIPIF1<0D.2【变式8-2】(2024·广东广州·广东实验中学校考模拟预测)(多选)对于下列四种说法,其中正确的是()A.SKIPIF1<0的最小值为4B.SKIPIF1<0的最小值为1C.SKIPIF1<0的最小值为4D.SKIPIF1<0最小值为SKIPIF1<0【变式8-3】(2024·江西赣州·高三南康中学校联考期末)已知函数SKIPIF1<0在区间SKIPIF1<0上有且只有一个最大值和一个最小值,则SKIPIF1<0的取值范围是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式8-4】(2024·湖北武汉·高三统考期末)已知函数SKIPIF1<0,SKIPIF1<0,若函数SKIPIF1<0在SKIPIF1<0上存在最大值,但不存在最小值,则SKIPIF1<0的取值范围是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【题型9三角函数零点综合】【例9】(2024·全国·模拟预测)函数SKIPIF1<0与函数SKIPIF1<0的图象所有交点的横坐标之和为.【变式9-1】(2024·全国·高三专题练习)已知函数SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上有两个零点,则SKIPIF1<0的取值范围是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式9-2】(2024·浙江宁波·高三统考期末)将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位后得到函数SKIPIF1<0的图象.若SKIPIF1<0在SKIPIF1<0上恰有三个不同的零点,则实数SKIPIF1<0的取值范围为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式9-3】(2023·甘肃天水·高三校联考阶段练习)已知函数SKIPIF1<0(其中SKIPIF1<0)在区间SKIPIF1<0上恰有4个零点,则SKIPIF1<0的取值范围为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【变式9-4】(2024·辽宁·高三校联考期末)(多选)已知函数SKIPIF1<0恰有5个零点,则SKIPIF1<0的值可能为()A.4B.5C.SKIPIF1<0D.SKIPIF1<0【题型10三角函数图象性质综合】【例10】(2024·新疆乌鲁木齐·统考一模)(多选)已知函数SKIPIF1<0的部分图像如图所示,则()

A.SKIPIF1<0在SKIPIF1<0上单调递增B.SKIPIF1<0在SKIPIF1<0上有4个零点C.SKIPIF1<0D.将SKIPIF1<0的图象向右平移SKIPIF1<0个单位,可得SKIPIF1<0的图象【变式10-1】(2024·吉林长春·高三长春吉大附中实验学校校考期末)已知函数SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)的部分图象如图所示,将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度,得到函数SKIPIF1<0的图象.(1)求SKIPIF1<0与SKIPIF1<0的解析式;(2)令SKIPIF1<0,求SKIPIF1<0在区间SKIPIF1<0内的所有实数解的和.【变式10-2】(2023·安徽·高三校联考阶段练习)函数SKIPIF1<0的部分图象如图所示.(1)求函数SKIPIF1<0的解析式;(2)将函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位,再将所得图象上各点的横坐标缩短为原来的SKIPIF1<0倍,纵坐标不变,得到函数SKIPIF1<0的图象,求函数SKIPIF1<0在SKIPIF1<0上的值域.【变式10-3】(2024·广东广州·广东实验中学校考一模)已知函数SKIPIF1<0的最小值为SKIPIF1<0,其图象上的相邻两条对称轴之间的距离为SKIPIF1<0,且图象关于点SKIPIF1<0对称.(1)求函数SKIPIF1<0的解析式和单调递增区间;(2)若不等式SKIPIF1<0在SKIPIF1<0上恒成立,求实数SKIPIF1<0的取值范围.【变式10-4】(2024·吉林白城·高三校考阶段练习)已知函数SKIPIF1<0为奇函数,且SKIPIF1<0图象的相邻两条对称轴间的距离为SKIPIF1<0.(1)求SKIPIF1<0的解析式与单调递减区间;(2)将函数SKIPIF1<0的图象向右平移SKIPIF1<0个单位长度,再把横坐标缩小为原来的SKIPIF1<0(纵坐标不变),得到函数SKIPIF1<0的图象,当SKIPIF1<0时,求方程SKIPIF1<0的所有根的和.(建议用时:60分钟)1.(2023·北京延庆·高三北京市延庆区第一中学校考阶段练习)设函数SKIPIF1<0,则下列结论正确的是()A.SKIPIF1<0的最小正周期为SKIPIF1<0B.SKIPIF1<0的图象关于直线SKIPIF1<0对称C.SKIPIF1<0的一个零点为SKIPIF1<0D.SKIPIF1<0的图象可以由SKIPIF1<0图像左移SKIPIF1<0得到2.(2022·全国·高三校联考专题练习)函数SKIPIF1<0的单调递增区间为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<03.(2024·河南南阳·高三方城第一高级中学校联考期末)函数SKIPIF1<0在SKIPIF1<0上的值域为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<04.(2024·云南昭通·统考模拟预测)函数SKIPIF1<0向左平移SKIPIF1<0个单位SKIPIF1<0得到SKIPIF1<0,若SKIPIF1<0是偶函数,则SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<05.(2023·青海·高三校联考阶段练习)将函数SKIPIF1<0的图象向左平移SKIPIF1<0个单位长度后得到函数SKIPIF1<0的图象,若直线SKIPIF1<0是SKIPIF1<0图象的一条对称轴,则SKIPIF1<0的值可能为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<06.(2023·福建福州·高三校联考期中)函数SKIPIF1<0的两个零点分别为SKIPIF1<0,且SKIPIF1<0,在SKIPIF1<0上SKIPIF1<0仅有两条对称轴,则SKIPIF1<0可以是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.(2023·河北石家庄·高三校考阶段练习)已知函数SKIPIF1<0满足SKIPIF1<0,且在SKIPIF1<0上单调,则SKIPIF1<0的最大值为()A.SKIPIF1<0B.3C.SKIPIF1<0D.48.(2024·江西南昌·南昌二中校联考模拟预测)设函数SKIPIF1<0若存在SKIPIF1<0且SKIPIF1<0,使得SKIPIF1<0,则SKIPIF1<0的取值范围是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<09.(2023·湖南·高三湖南省祁东县第一中学校联考阶段练习)若函数SKIPIF1<0在区间SKIPIF1<0上恰有两个零点,则SKIPIF1<0的取值范围是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<010.(2023·江苏南京·高三期末)已知函数SKIPIF1<0在区间SKIPIF1<0上恰有两个最大值,则实数SKIPIF1<0的取值范围是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<011.(2023·广西·高三南宁三中校联考阶段练习)(多选)已知函数SKIPIF1<0,则下列说法正确的是()A.SKIPIF1<0的最小正周期为SKIPIF1<0B.SKIPIF1<0在区间SKIPIF1<0上单调递减C.SKIPIF1<0是函数SKIPIF1<0图象的一条对称轴D.SKIPIF1<0的图象关于点SKIPIF1<0对称12.(2023·山东青岛·高三莱西市第一中学校联考期中)(多选)设函数SKIPIF1<0,则()A.SKIPIF1<0为奇函数B.SKIPIF1<0的最小正周期为SKIPIF1<0C.SKIPIF1<0存在零点D.SKIPIF1<0存在极值点13.(2023·安徽安庆·高三怀宁县新安中学校考期中)(多选)已知SKIPIF1<0,下列结论中正确的有()A.SKIPIF1<0既是奇函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论