版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
热点2-5导数的应用-单调性与极值导数与函数是高中数学的核心内容,高考中经常在函数、导数与不等式等模块的知识交汇处命题,形成层次丰富的各类题型,常涉及的问题有利用导数解决函数的单调性、极值和最值;与不等式、数列、方程的根(或函数的零点),三角函数等问题。此类问题体现了分类讨论、数形结合、转化与化归等数学思想,重点考查学生的数形结合能力,处理综合性问题的能力和运算求解能力。本题考试难度大,除了方法与技巧的训练,考生在复习中要注意强化基础题型的解题步骤,提高解题熟练度。【题型1求函数的单调区间或单调性】满分技巧1、求函数单调区间的步骤(1)确定函数的定义域;(2)求(通分合并、因式分解);(3)解不等式,解集在定义域内的部分为单调递增区间;(4)解不等式,解集在定义域内的部分为单调递减区间.2、含参函数单调性讨论依据:(1)导函数有无零点讨论(或零点有无意义);(2)导函数的零点在不在定义域或区间内;(3)导函数多个零点时大小的讨论。【例1】(2023·广西·模拟预测)函数的单调递增区间为.【变式1-1】(2023·北京西城·高三北师大实验中学校考阶段练习)函数在上的单调递减区间为.【变式1-2】(2023·山东淄博·高三统考期中)已知函数.(1)求曲线在点处的切线方程;(2)求函数的单调增区间.【变式1-3】(2023·全国·高三专题练习)已知函数,当时,求函数的单调区间.【变式1-4】(2023·山西大同·高三统考期末)已知函数,.(1)求曲线的平行于直线的切线方程;(2)讨论的单调性.【题型2根据函数的单调性求参数】满分技巧已知函数的单调性求参数(1)函数在区间D上单调增(单减)在区间D上恒成立;(2)函数在区间D上存在单调增(单减)区间在区间D上能成立;(3)已知函数在区间D内单调不存在变号零点(4)已知函数在区间D内不单调存在变号零点【例2】(2024·海南海口·高三海南中学校考阶段练习)已知函数在上为减函数,则的取值范围是()A.B.C.D.【变式2-1】(2023·福建泉州·高三泉州第一中学校考阶段练习)若函数在上存在单调递增区间,则实数的取值范围为()A.B.C.D.【变式2-2】(2023·广东汕头·高三统考期中)设,若函数在递增,则的取值范围是()A.B.C.D.【变式2-3】(2023·福建三明·高三校联考期中)已知函数,则在上不单调的一个充分不必要条件是()A.B.C.D.【变式2-4】(2023·山东枣庄·高三枣庄市第三中学校考阶段练习)若函数在其定义域内的一个子区间内不是单调函数,则实数k的取值范围()A.B.C.D.【题型3导函数与函数的图象关系】满分技巧(1)对于原函数,要注意图象在哪个区间内单调递增,在哪个内单调递减;(2)对于导函数,则要注意函数值在哪个区间内大于零,在哪个区间内小于零,同时还要注意这些区间与原函数的单调性的一致。【例3】(2023·广东湛江·高三校考阶段练习)的图象如图所示,则的图象最有可能是()A.B.C.D.【变式3-1】(2024上·江西景德镇·高三景德镇一中校考阶段练习)(多选)已知函数的定义域为R且导函数为,如图是函数的图象,则下列说法正确的是()A.函数的减区间是,B.函数的减区间是,C.是函数的极小值点D.是函数的极小值点【变式3-2】(2023·新疆喀什·高三统考期中)(多选)已知函数,其导函数的图象如图所示,则()A.在上为减函数B.在处取极大值C.在上为减函数D.在处取极小值【变式3-3】(2023·全国·高三专题练习)设是函数的导函数,的图象如图所示,则的图象可能是()A.B.C.D.【变式3-4】(2023·黑龙江齐齐哈尔·统考二模)已知函数的图象如图所示(其中是函数的导函数),下面四个图象中可能是图象的是()A.B.C.D.【题型4求函数的极值或极值点】满分技巧利用导数求函数极值的方法步骤(1)求导数;(2)求方程的所有实数根;(3)观察在每个根x0附近,从左到右导函数的符号如何变化.①如果的符号由正变负,则是极大值;②如果由负变正,则是极小值.③如果在的根x=x0的左右侧的符号不变,则不是极值点.【例4】(2023·湖南·高三邵阳市第二中学校联考阶段练习)已知函数(为自然对数的底数),则函数的极小值为()A.B.C.D.1【变式4-1】(2023·全国·模拟预测)函数在区间的极大值、极小值分别为()A.,B.,C.,D.,【变式4-2】(2023·江苏·高三泰州中学校联考阶段练习)函数的极大值是.【变式4-3】(2023·河南·高三南阳中学校联考阶段练习)若函数,则函数的极小值为.【变式4-4】(2024·河南·统考模拟预测)已知函数在点处的切线与直线垂直.(1)求;(2)求的单调区间和极值.【题型5根据函数的极值求参数范围】满分技巧(1)列式:根据极值点处导数值为0和极值这两个条件列方程;(2)验证:求解后验证根的合理性,做好取舍。【例5】(2024·全国·模拟预测)已知三次函数的极小值点为,极大值点为,则等于()A.B.C.D.【变式5-1】(2024上·广东潮州·高三统考期末)若函数在上有极值,则实数的取值范围是()A.B.C.D.【变式5-2】(2024上·河南南阳·高三统考期末)若函数有两个不同的极值点,则实数a的取值范围为(
)A.B.C.D.【变式5-3】(2023·广东广州·统考模拟预测)若函数在区间上存在极小值点,则a的取值范围为()A.B.C.D.【变式5-4】(2023·北京顺义·高三北京市顺义区第一中学校考期中)若函数既有极大值也有极小值,则错误的是()A.B.C.D.【题型6利用导数求函数的最值】满分技巧函数在区间上连续,在内可导,则求函数最值的步骤为:(1)求函数在区间上的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值;(3)实际问题中,“驻点”如果只有一个,这便是“最值”点。【例6】(2023·四川南充·高三南部中学校考阶段练习)已知函数在区间上的最小值为.【变式6-1】(2023·全国·高三专题练习)已知函数,求的最小值.【变式6-2】(2024·全国·高三专题练习)已知函数,.讨论函数的最值;【变式6-3】(2024上·北京顺义·高三统考期末)已知函数.(1)求的最小正周期和单调递增区间;(2)设函数,求在区间上的最大值.【变式6-4】(2023·山东青岛·高三统考期中)已知函数.(1)若是函数的极值点,求在处的切线方程.(2)若,求在区间上最大值.【题型7根据函数的最值求参数范围】【例7】(2022·广西桂林·高三校考阶段练习)已知函数在处取最大值,则实数()A.B.1C.D.2【变式7-1】(2023·山东潍坊·高三统考阶段练习)已知函数在区间上的最小值为,则实数a的取值范围为()A.B.C.D.【变式7-2】(2023·陕西汉中·高三校联考阶段练习)已知函数在区间上存在最大值,则实数a的取值范围是()A.B.C.D.【变式7-3】(2023·辽宁·高三校联考阶段练习)已知函数,若在内存在最小值,则a的取值范围为()A.B.C.D.【变式7-4】(2023·上海·高三上海中学校考期中)已知,函数,.(1)当时,若斜率为0的直线l是的一条切线,求切点的坐标;(2)若与有相同的最小值,求实数a.【题型8函数的单调性、极值、最值综合】【例8】(2024·河南·模拟预测)已知函数.(1)讨论的单调性;(2)证明:当时,.【变式8-1】(2023·全国·模拟预测)已知函数.(1)若,求在上的最大值和最小值;(2)讨论函数的零点个数.【变式8-2】(2024上·山东淄博·高三统考期末)已知函数.(1)若时,恒有,求a的取值范围;(2)证明:当时,.【变式8-3】(2024·全国·模拟预测)已知函数有两个极值点,且.(1)求的取值范围;(2)求关于的不等式的解集.(建议用时:60分钟)1.(2024·北京昌平·高三统考期末)下列函数中,在区间上为减函数的是()A.B.C.D.2.(2023·山东菏泽·高三菏泽一中校考阶段练习)设函数,则()A.在单调递增B.在上存在最大值C.在定义域内存在最值D.在上存在最小值3.(2024·全国·模拟预测)已知函数,为的导函数,,则()A.的极大值为,无极小值B.的极小值为,无极大值C.的极大值为,无极小值D.的极小值为,无极大值4.(2024·陕西咸阳·统考模拟预测)等差数列中的,是函数的极值点,则()A.B.C.3D.5.(2024·陕西榆林·统考一模)已知函数在上单调递增,则的取值范围是()A.B.C.D.6.(2023·黑龙江齐齐哈尔·高三统考期末)若为函数的极值点,则函数的最小值为()A.B.C.D.7.(2023·湖南长沙·高三长沙一中校考阶段练习)已知函数的导函数的图象如图所示,则下列说法正确的是()A.函数有最小值B.函数有最大值C.函数有且仅有三个零点D.函数有且仅有两个极值点8.(2023·天津西青·高三校考开学考试)已知函数的图象是下列四个图象之一,且其导函数的图象如下图所示,则该函数的大致图象是()A.B.C.D.9.(2024·山西晋城·高三晋城市第一中学校校考期末)(多选)已知函数,则()A.有两个极值点B.有两个零点C.点是曲线的对称中心D.过点可作曲线的两条切线10.(2023·广东深圳·高三深圳中学校考阶段练习)(多选)对于函数,则下列结论正确的是()A.是的一个周期B.在上有3个零点C.的最大值为D.在上是增函数11.(2023·湖南长沙·高三长沙一中校考阶段练习)函数的值域为.12.(2023·上海·高三校考期中)函数的极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年电脑芯片行业市场发展分析及发展趋势前景预测报告
- 2024-2030年环保服务产业深度调研及行业发展趋势与投资战略研究报告
- 2024-2030年狗关节植入物行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年牛油果产业规划专项研究报告
- 2024新蓝图:实现持续和高效的成功变革研究报告-埃森哲-202411
- 七年级上册(2024修订) 第四单元 写作 思路要清晰 导学案(无答案)
- 2024年电子工业专用设备项目评价分析报告
- 美容用晒黑油项目运营指导方案
- 非电动磨咖啡器细分市场深度研究报告
- 雪地滑板车玩具商业机会挖掘与战略布局策略研究报告
- 物理降温-课件
- 启东市变电站网络信息运维安全教育考试题(含答案)
- 特殊教育支持体系
- 手术安全核查PDCA案例
- 布袋除尘器卸灰操作步骤
- 《病原生物与免疫学》课程标准
- 投资项目法律意见书模板-法律意见书模板
- 2021《外国文学史》题库及答案
- DB63-T 2109-2023 湟水流域水生植物繁育技术规程
- 中药煎药质量评估检查表
- 组态软件技术课程设计报告书
评论
0/150
提交评论