高考数学大一轮复习精讲精练(新高考地区)8.2圆的方程(精讲)(原卷版+解析)_第1页
高考数学大一轮复习精讲精练(新高考地区)8.2圆的方程(精讲)(原卷版+解析)_第2页
高考数学大一轮复习精讲精练(新高考地区)8.2圆的方程(精讲)(原卷版+解析)_第3页
高考数学大一轮复习精讲精练(新高考地区)8.2圆的方程(精讲)(原卷版+解析)_第4页
高考数学大一轮复习精讲精练(新高考地区)8.2圆的方程(精讲)(原卷版+解析)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.2圆的方程【题型解读】【知识必备】1.圆的定义和圆的方程定义平面上到定点的距离等于定长的点的集合叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心Ceq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2)))半径r=eq\f(1,2)eq\r(D2+E2-4F)2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.【题型精讲】【题型一求圆的方程】必备技巧求圆的方程的两个方法(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.例1(2023·全国·高三专题练习)若圆C与直线:和:都相切,且圆心在y轴上,则圆C的方程为(

)A. B.C. D.例2(2023·陕西·西北工业大学附属中学高三阶段练习)已知圆的圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5),则圆的一般方程为________________.【跟踪精练】1.(2023·青岛高三月考)已知直线与以点为圆心的圆相交于A,B两点,且,则圆C的方程为()A. B.C. D.2.(2023·济南高三期末)已知圆E经过三点A(0,1),B(2,0),C(0,-1),则圆E的标准方程为()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2)))2+y2=eq\f(25,4) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(3,4)))2+y2=eq\f(25,16)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,16) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,4)【题型二与圆有关的轨迹问题】必备技巧求与圆有关的轨迹问题的方法:(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.例3(2023·青岛高三模拟)古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,,,点满足,则点的轨迹方程为(

)A. B. C. D.例4(2023·山东日照高三模拟)已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.【跟踪精练】1.已知圆,直线,过上的点作圆的两条切线,切点分别为,则弦中点的轨迹方程为(

)A. B.C. D.2.(2023·全国高三模拟)自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为()A.8x-6y-21=0 B.8x+6y-21=0C.6x+8y-21=0 D.6x-8y-21=03.(2023·浙江高三模拟)在边长为1的正方形ABCD中,边AB、BC上分别有一个动点Q、R,且.求直线AR与DQ的交点P的轨迹方程.【题型三与圆有关的最值问题】方法技巧与圆有关的最值问题的求解方法(1)借助几何性质求最值:形如μ=eq\f(y-b,x-a),t=ax+by,(x-a)2+(y-b)2形式的最值问题.(2)建立函数关系式求最值:列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.(3)求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最值问题的基本思路:①“动化定”,把与圆上动点的距离转化为与圆心的距离;②“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.例5(2023·全国高三专题练习)已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)求eq\f(y-3,x+2)的最大值和最小值;(3)求y-x的最大值和最小值.例6(2023·广东深圳市·高三二模)若点P为圆x2+y2=1上的一个动点,A(-1,0),B(1,0)为两个定点,则|PA|+|PB|的最大值为()A.2B.2eq\r(2)C.4eq\r(2)D.4【题型精练】1.(2023·全国·高三专题练习)已知x,y满足x2+y2-4x-2y-4=0,则eq\f(2x+3y+3,x+3)的最大值为()A.2B.eq\f(17,4)C.eq\f(29,5)D.eq\f(13\r(13),4)2.(2023·全国·高三专题练习)设点P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0).则eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))的最大值为________.【题型四点与圆】例7(2023·全国高三专题练习)已知点,,,若点在以为直径的圆外,则的取值范围是______例8(2023·全国·高三专题练习)点是直线上任意一点,是坐标原点,则以为直径的圆经过定点(

)A.和 B.和 C.和 D.和【题型精练】1.点与圆的位置关系为______.(填“在圆上”“在圆外”“在圆内”)2.(2023·山东青岛高三月考)判别方程(k为参数,)表示何种曲线?找出通过定点的坐标.8.2圆的方程【题型解读】【知识必备】1.圆的定义和圆的方程定义平面上到定点的距离等于定长的点的集合叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心Ceq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2)))半径r=eq\f(1,2)eq\r(D2+E2-4F)2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.【题型精讲】【题型一求圆的方程】必备技巧求圆的方程的两个方法(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.例1(2023·全国·高三专题练习)若圆C与直线:和:都相切,且圆心在y轴上,则圆C的方程为(

)A. B.C. D.答案:B【解析】因为直线:和:的距离,由圆C与直线:和:都相切,所以圆的半径为,又圆心在轴上,设圆心坐标为,,所以圆心到直线的距离等于半径,即,所以或(舍去),所以圆心坐标为,故圆的方程为;故选:B例2(2023·陕西·西北工业大学附属中学高三阶段练习)已知圆的圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5),则圆的一般方程为________________.答案:x2+y2+2x+4y-5=0【解析】方法一设所求圆的标准方程为(x-a)2+(y-b)2=r2,由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(2-a2+-3-b2=r2,,-2-a2+-5-b2=r2,,a-2b-3=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=-1,,b=-2,,r2=10,))故所求圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.方法二线段AB的垂直平分线方程为2x+y+4=0,联立eq\b\lc\{\rc\(\a\vs4\al\co1(2x+y+4=0,,x-2y-3=0,))得交点坐标O(-1,-2),又点O到点A的距离d=eq\r(10),所以圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.【跟踪精练】1.(2023·青岛高三月考)已知直线与以点为圆心的圆相交于A,B两点,且,则圆C的方程为()A. B.C. D.答案:C【解析】由题意,为等腰直角三角形,所以圆心到直线的距离,即,解得,所以圆C的方程为,故选:C.2.(2023·济南高三期末)已知圆E经过三点A(0,1),B(2,0),C(0,-1),则圆E的标准方程为()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2)))2+y2=eq\f(25,4) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(3,4)))2+y2=eq\f(25,16)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,16) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,4)答案:C【解析】方法一(待定系数法)设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(1+E+F=0,,4+2D+F=0,,1-E+F=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-\f(3,2),,E=0,,F=-1.))所以圆E的一般方程为x2+y2-eq\f(3,2)x-1=0,即eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,16).方法二(几何法)因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y-eq\f(1,2)=2(x-1)上.由题意知圆E的圆心在x轴上,所以圆E的圆心坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4),0)).则圆E的半径为|EB|=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(2-\f(3,4)))2+0-02)=eq\f(5,4),所以圆E的标准方程为eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,4)))2+y2=eq\f(25,16).【题型二与圆有关的轨迹问题】必备技巧求与圆有关的轨迹问题的方法:(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.例3(2023·青岛高三模拟)古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,,,点满足,则点的轨迹方程为(

)A. B. C. D.答案:B【解析】∵,即设,则,整理得故选:B.例4(2023·山东日照高三模拟)已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.【解析】(1)方法一设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,且BC,AC斜率均存在,所以kAC·kBC=-1,又kAC=eq\f(y,x+1),kBC=eq\f(y,x-3),所以eq\f(y,x+1)·eq\f(y,x-3)=-1,化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).方法二设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=eq\f(1,2)|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).(2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x=eq\f(x0+3,2),y=eq\f(y0+0,2),所以x0=2x-3,y0=2y.由(1)知,点C的轨迹方程为(x-1)2+y2=4(y≠0),将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1(y≠0).因此动点M的轨迹方程为(x-2)2+y2=1(y≠0).【跟踪精练】1.已知圆,直线,过上的点作圆的两条切线,切点分别为,则弦中点的轨迹方程为(

)A. B.C. D.答案:B【解析】易得弦中点为直线和的交点,设,则直线的方程为,又均与圆相切,故,故四点共圆,且为以为直径的圆与圆的公共弦.又以为直径的圆的方程为,即,故的方程为相减,即.又,所以,代入有,化简得.当时,;当时,均满足方程.又当时,不满足题意.综上有点的轨迹方程为故选:B2.(2023·全国高三模拟)自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为()A.8x-6y-21=0 B.8x+6y-21=0C.6x+8y-21=0 D.6x-8y-21=0答案:D【解析】由题意得,圆心C的坐标为(3,-4),半径r=2,连接PC,CQ(图略),因为|PQ|=|PO|,且PQ⊥CQ,所以|PO|2+r2=|PC|2,所以x2+y2+4=(x-3)2+(y+4)2,即6x-8y-21=0,所以点P的轨迹方程为6x-8y-21=0.3.(2023·浙江高三模拟)在边长为1的正方形ABCD中,边AB、BC上分别有一个动点Q、R,且.求直线AR与DQ的交点P的轨迹方程.【解析】分别以AB,AD边所在的直线为x轴、y轴建立直角坐标系.如图所示,则点、、、,设动点,,由知:,则.当时,直线AR:①,直线DQ:,则②,①×②得:,化简得.当时,点P与原点重合,坐标也满足上述方程.故点P的轨迹方程为.【题型三与圆有关的最值问题】方法技巧与圆有关的最值问题的求解方法(1)借助几何性质求最值:形如μ=eq\f(y-b,x-a),t=ax+by,(x-a)2+(y-b)2形式的最值问题.(2)建立函数关系式求最值:列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.(3)求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最值问题的基本思路:①“动化定”,把与圆上动点的距离转化为与圆心的距离;②“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.例5(2023·全国高三专题练习)已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)求eq\f(y-3,x+2)的最大值和最小值;(3)求y-x的最大值和最小值.【解析】(1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,∴圆心C的坐标为(2,7),半径r=2eq\r(2).又|QC|=eq\r(2+22+7-32)=4eq\r(2),∴|MQ|max=4eq\r(2)+2eq\r(2)=6eq\r(2),|MQ|min=4eq\r(2)-2eq\r(2)=2eq\r(2).(2)可知eq\f(y-3,x+2)表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.∵直线MQ与圆C有交点,∴eq\f(|2k-7+2k+3|,\r(1+k2))≤2eq\r(2),可得2-eq\r(3)≤k≤2+eq\r(3),∴eq\f(y-3,x+2)的最大值为2+eq\r(3),最小值为2-eq\r(3).(3)设y-x=b,则x-y+b=0.当直线y=x+b与圆C相切时,截距b取到最值,∴eq\f(|2-7+b|,\r(12+-12))=2eq\r(2),∴b=9或b=1.∴y-x的最大值为9,最小值为1.例6(2023·广东深圳市·高三二模)若点P为圆x2+y2=1上的一个动点,A(-1,0),B(1,0)为两个定点,则|PA|+|PB|的最大值为()A.2B.2eq\r(2)C.4eq\r(2)D.4答案:B【解析】由已知得线段AB为圆的直径.所以|PA|2+|PB|2=4,由基本不等式得eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(|PA|+|PB|,2)))2≤eq\f(|PA|2+|PB|2,2)=2,所以|PA|+|PB|≤2eq\r(2),当且仅当|PA|=|PB|=eq\r(2)时,等号成立.【题型精练】1.(2023·全国·高三专题练习)已知x,y满足x2+y2-4x-2y-4=0,则eq\f(2x+3y+3,x+3)的最大值为()A.2B.eq\f(17,4)C.eq\f(29,5)D.eq\f(13\r(13),4)答案:B【解析】由x2+y2-4x-2y-4=0得(x-2)2+(y-1)2=9.eq\f(2x+3y+3,x+3)=2+3×eq\f(y-1,x+3)=2+3kPA,其中A(-3,1)为定点,点P(x,y)为圆上一点.设过定点A的直线l:y-1=k(x+3)与圆相切,则eq\f(|5k|,\r(1+k2))=3,解得k=±eq\f(3,4),所以-eq\f(3,4)≤kPA≤eq\f(3,4),所以eq\f(2x+3y+3,x+3)的最大值为2+3×eq\f(3,4)=eq\f(17,4).2.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论