2022届浙江省杭州市杭州七县市区高三第三次模拟考试数学试卷含解析_第1页
2022届浙江省杭州市杭州七县市区高三第三次模拟考试数学试卷含解析_第2页
2022届浙江省杭州市杭州七县市区高三第三次模拟考试数学试卷含解析_第3页
2022届浙江省杭州市杭州七县市区高三第三次模拟考试数学试卷含解析_第4页
2022届浙江省杭州市杭州七县市区高三第三次模拟考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.2.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()A. B. C. D.3.的展开式中有理项有()A.项 B.项 C.项 D.项4.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.5.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.66.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④7.设函数恰有两个极值点,则实数的取值范围是()A. B.C. D.8.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2 B.3 C.4 D.9.已知角的终边经过点P(),则sin()=A. B. C. D.10.若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)11.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位12.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在各项均为正数的等比数列中,,且,成等差数列,则___________.14.已知函数在处的切线与直线平行,则为________.15.已知实数x,y满足,则的最大值为____________.16.在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满100元减20元;方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款7折8折9折原价(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;(2)若某顾客购物金额为180元,选择哪种方案更划算?18.(12分)如图1,四边形是边长为2的菱形,,为的中点,以为折痕将折起到的位置,使得平面平面,如图2.(1)证明:平面平面;(2)求点到平面的距离.19.(12分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:愿意不愿意男生6020女士4040(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82820.(12分)在中,、、分别是角、、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.21.(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.22.(10分)如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.2.B【解析】

根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.3.B【解析】

由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,,当,,,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.4.C【解析】

由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.5.D【解析】

作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.6.C【解析】

根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.7.C【解析】

恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.8.B【解析】

因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,,即,又,.故选:B.【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.9.A【解析】

由题意可得三角函数的定义可知:,,则:本题选择A选项.10.C【解析】

求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【详解】由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.令x3+x2-=-,得x=0或x=-3,则结合图象可知,解得a∈[-3,0),故选C.【点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.11.D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D12.A【解析】

设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

利用等差中项的性质和等比数列通项公式得到关于的方程,解方程求出代入等比数列通项公式即可.【详解】因为,成等差数列,所以,由等比数列通项公式得,,所以,解得或,因为,所以,所以等比数列的通项公式为.故答案为:【点睛】本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识综合运用能力;熟练掌握等差中项和等比数列通项公式是求解本题的关键;属于中档题.14.【解析】

根据题意得出,由此可得出实数的值.【详解】,,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【点睛】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.15.1【解析】

直接用表示出,然后由不等式性质得出结论.【详解】由题意,又,∴,即,∴的最大值为1.故答案为:1.【点睛】本题考查不等式的性质,掌握不等式的性质是解题关键.16.【解析】

结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可【详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:【点睛】本题考查由三角函数图像求解解析式,数形结合思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)选择方案二更为划算【解析】

(1)计算顾客获得7折优惠的概率,获得8折优惠的概率,相加得到答案.(2)选择方案二,记付款金额为元,则可取的值为126,144,162,180.,计算概率得到数学期望,比较大小得到答案.【详解】(1)该顾客获得7折优惠的概率,该顾客获得8折优惠的概率,故该顾客获得7折或8折优惠的概率.(2)若选择方案一,则付款金额为.若选择方案二,记付款金额为元,则可取的值为126,144,162,180.,,则.因为,所以选择方案二更为划算.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.18.(1)证明见解析(2)【解析】

(1)由题意可证得,,所以平面,则平面平面可证;(2)解法一:利用等体积法由可求出点到平面的距离;解法二:由条件知点到平面的距离等于点到平面的距离,过点作的垂线,垂足,证明平面,计算出即可.【详解】解法一:(1)依题意知,因为,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等边三角形,且为的中点,所以.因为,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱锥的体积.在中,,,得,由(1)知,平面,所以,所以,设点到平面的距离,则三棱锥的体积,得.解法二:(1)同解法一;(2)因为,平面,平面,所以平面.所以点到平面的距离等于点到平面的距离.过点作的垂线,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即为点到平面的距离.由(1)知,,在中,,,得.又,所以.所以点到平面的距离为.【点睛】本题主要考查空间面面垂直的的判定及点到面的距离,考查学生的空间想象能力、推理论证能力、运算求解能力.求点到平面的距离一般可采用两种方法求解:①等体积法;②作(找)出点到平面的垂线段,进行计算即可.19.(1)有99%把握认为愿意参加新生接待工作与性别有关;(2)详见解析.【解析】

(1)计算得到,由此可得结论;(2)根据分层抽样原则可得男生和女生人数,由超几何分布概率公式可求得的所有可能取值所对应的概率,由此得到分布列;根据数学期望计算公式计算可得期望.【详解】(1)∵的观测值,有的把握认为愿意参加新生接待工作与性别有关.(2)根据分层抽样方法得:男生有人,女生有人,选取的人中,男生有人,女生有人.则的可能取值有,,,,,的分布列为:.【点睛】本题考查独立性检验、分层抽样、超几何分布的分布列和数学期望的求解;关键是能够明确随机变量服从于超几何分布,进而利用超几何分布概率公式求得随机变量每个取值所对应的概率.20.(1).(2).【解析】

(1)根据题意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等变换的公式,化简得到,再根据为锐角三角形,求得,利用三角函数的图象与性质,即可求解.【详解】(1)由题意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵为锐角三角形,∴,即,则,所以,综上的取值范围为.【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论