版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
=·1·(2)任意x>0,恒有sinhx-kx>0成立,求实数·1· *(coshx(/=/==sinhx,(coshx(/=/==sinhx,2(coshx(2-1=2×2-1=-1==cosh(2x(;(coshx(2-(sinhx(2=22=-=1;①当k≤1时,由coshx=≥ex⋅e-x=1,所以F/(x(=coshx-k>0,即F(x)为增函数,此时F(x)>F(0)=0,对任意x>0,sinhx>kx恒成立,满足题意;x(=sinhx>0,可知G(x)是增函数,0类比双曲余弦函数的二倍角公式cosh(n=cosh(2n-1m(,·2·n=cosh(2n-1m(·2· 2024=cosh(22023m(=,设t=22023mt=4或,即t=±ln4,所以m=±,即a1=coshm==2+2.n+1=2a-1,所以an+1=2(coshxn(2-1=cosh(2xn(,则an+1=cosh(xn+1(=cosh(2xn(,1所以a=a1=cosh(x1(=(ex1+e-x1(=4+4=2+2,f(x1(-f(x2(|<f(x1(-f(x2(|<1.1≤x1<x2≤3,则|f(x1(-f(x2(|=+1+1(|=|x1-x2|<2|x1-x2|,·3·<x·3· 则|f(x1(-f(x2(|<3|x1-x2|=3(x2-x1(恒成立,可得3x1-3x2<f(x1(-f(x2(<3x2-3x1,即f(x1(+3x1<f(x2(+3x2,f(x2(-3x2<f(x1(-3x1均恒成立,x(=f/(x(+3,由f(x1(+3x1<f(x2(+3x2可知g(x(在[1,e[内单调递增,x(≤3[1,e[内恒成立;即-3≤f/(x(≤3在[1,e[内恒成立,又因为f/(x)=axex-x-1-lnx,即-3≤axex-x-1-lnx≤3,整理得≤a≤,可得≤a≤,令t=x+lnx,t(≥G(e+1(=;e+1e+11=x2,可得|f(x1(-f(x2(|=0<1,符合题意;<x2≤2,①若0<x2-x1≤,则|f(x1(-f(x2(|<2|x1-x2|≤1;②若<x2-x1≤1,则|f(x1(-f(x2(|=|f(x1(-f(1(+f(1(-f(x2(|=|f(x1(-f(1(+f(2(-f(x2(|≤|f(x1(-f(1(|+|f(2(-f(x2(|≤2(x1-1(+2(2-x2(=2-2(x2-x1(<1;·4·f(x1(-f(x2(|<1·4·+的函数称为n次置换.满足对任意i∈f1(f(⋯f((,记f(i(=f1(i(,f(f(i((=f2(i(,f(f2(i((=f3(i(,⋯,f(fk-1(i((=fk(i(,i∈A,k∈N+.f(i(=i(;+i(=i(=,,f3(i(=;i(=44当f(i(=当f(i(=444(或f(i(=.2134(或f(i(=2431(或f(i(=23322334(或f(i(=2431(或f(i(=213444(或f(i(=(或f(i(=·5·; +f1(i(k+=⋯(,即f(i(=ffffffffffffffffffffffffffffffffffffffffffffffffffff【题型训练-刷模拟】·6··6· (2)已知函数g(x(=ln(x+1(+x3,设集合P={x(2)(i)对h(x(=ln(x+1(+x3-x(x>-1(求导得出函数h(x(的单调性,利用零点存在定理即可求得集合P中元素的个数为2个;r[,=1+cosx≥0恒成立,所以f(x(在[0,r[上单调递增,可得f(x(的值域为[0,r+sinr[,即可得r+sinr≤r,即sinr≤0(r>0(,(2)(i)记函数h(x(=g(x(-x=ln(x+1(+x3-x(x>-1(,4+9x2(x+1(-4(x+1(9x2(x+1(-4xx(3x+4((3x-1(则h′(x(=4+9x2(x+1(-4(x+1(9x2(x+1(-4xx(3x+4((3x-1(>0得-1<x<0或x>;由h′(x(<0得0<x<;(ii)由(i)得m=x0,假设长度为m的闭区间D=[a,a+x+x0[+x0[,·7·当-1<a<0时,由(i)得h(x(在(-1,0·7· ∴h(a+x0(=g(a+x0(-(a+x0(>h(x0(=0,,而g(x(显然在(-1,+∞(单调递增,∴g(0(≤g(x(≤g(x0(,由(i)可得g(0(=h(0(+0=0,g(x0(=h(x0(+x0=D,满足要求. 2=D,若x1f(x1(-f(x2(|≤t|g(x1(-g(x2(|(t>0)成立,则称函数y=f(x)与y=g(x)“具有性质H,求证x+x>2.得2<x1+x2<4,即|x1+x2|<4,则|x1+x2|⋅|x1-x2|<4|x1-x2f(x1(-f(x2(|≤2|g(x1(-g(x2(|,·8··8· ,1[与g(x(=“具有性质H(t)”,即|2+x-2-x|≤t-,x2,则0<x1+x2<2,0<x1x2<1,即0<x1x2(x1+x2)<2,又函数f(x(=+2lnx-3与y=g(x)“具有性质H(1)”,则|f(x1(-f(x2(|≤|g(x1(-g(x2(|=0,即f(x1(=f(x2(,即+2lnx1-3=+2lnx2-3,令x=t1,x=t2,即+lnt1-3=+lnt2-3,记h(x(=+lnx-3,即h(t1(=h(t2(,因为h/(x(=-+=,要证x+x>2,即证t1+t2>2,不妨设0<t1<1<t2,即证t2>2-t1>1,只需证h(t2(>h(2-t1(,即证h(t1(>h(2-t1(,设H(x(=h(x(-h(2-x(,即H(x(=+lnx---ln(2-x(,因为H/(x(=-+--+-=-≤0,所以函数y=H(x(在(0,+∞(是减函数,且H(1)=0,又0<t1<1,则H(t1(>H(1(=0,即h(t1(-h(2-t1(>0,则h(t1(>h(2-t1(得证,故x+x>2.·9··9· 故可取f(x)=tanx(.(2)假设有f(x)是集合Z到Q的一个完美对应,(3)f(x(=x3-kx2+1,f/(x(=3x2-2kx=0,得x=0或,f/又f(0)=1<2,故只有极小值f≤-3才满足题意,即3-k2+1≤-3,k≥3,f/·10·又f(0)=1>-3,故只有极大值f≥2才满足题意,·10· 即3-k2+1≥2,即k≤-.后对k进行合理分类讨论即可.*对于f2(x)=lnx,f(x)=(x>0)是严格减函数,则f2(x)在不同点处的切线斜率不同,=-1==tan2x≥0恒成立,且仅当x=0时g/(x)=0,令g1由y=g1(x)的图象是连续曲线,且g1(-g1=-1<0,·11·:y-tanx1+x1-a=tan2x1⋅(x-x1),l2:y-tanx2+x2-a=tan2x2⋅(x-x2),有相同截距,即-x1tan2x1+tanx1-x1+a=-x2tan2x2+tanx2-x2+a,而x2=-x1·11· 则-x1tan2x1+tanx1-x1=x1tan2x1-tanx1+x1,即x1(1+tan2x1)=tanx1,则有x1=sinx1cosx1,即2x1=sin2x1,令φ(x)=x-sinx,0<x<π,φ/(x)=1-cosx>0,又h(x)在点(t,sint)处的切线方程为y-sint=cost(x-t),即y=xcost+sint-tcost,h(x)在点(s,sins)处的切线方程为y=xcoss+sins-scoss,-t(t,coss=cost且tans=-tant,从而存在n∈N*,使得s=2nπ-t,代入tans-s=tant-t,可得tant-t+nπ=0,则xn=t,即t是数列{xn{中的项;反之,若t是数列{xn{中的项,则存在n∈N*,使得xn=t,即tant-t+nπ=0,令s=2nπ-t,则s∈(2π,+∞)且coss=cost,tans-s-(tant-t)=2(t-tant-nπ)=0,即tans-s=tant-t,可得sins-scoss=sint-tcost,所以存在s∈(2π,+∞),使得点(s,sins)与(t,sint)是函数y=sinx的图象的一是数列{xn{中的项”.【点睛】结论点睛:函数y=f(x)是区间D上的可导函数,则曲线y=f(x)在点(x0,f(x0))(x0∈D)方程为:y-f(x0)=f/(x0)(x-x0).(x)=sinx-x2与φ2(x(=ex-x是否具有性质φ1-φ2⎳x0>0?并说明理由.(2)已知函数f(x(=aex-ln(x+1(与g(x(=ln(x+a(-ex+1具有性质f-g⎳x1>x2.(2)(i)a∈(0,1(∪(1(x)=sinx-x2与φ2(x(=ex-x具有性质φ1-φ2⎳x0>0,理由如下:φ(x)=cosx-2x,令h(x(=φ(x(=cosx-2x,·12·则h/(x(=-sinx-2<0,故φ(x·12· 则φ1(x(在(-∞,x0(上单调递增,在(x0,+∞(上单调递减,(x)在(-∞,0(上单调递减,在(0,+∞(上单调递增,(x)=sinx-x2与φ2(x(=ex-x具有性质φ1-φ2⎳x0>0;(2)(i)f(x(=aex-,又x+1>0,故x>-1,当a≤0时,f(x(=aex-<0,此时f(x(没有极值点,故舍去,当a>0时,令m(x(=f(x(=aex-故f(x(在(-1,+∞(上单调递增,g(x(=-ex,x+a>0,故x>-a,故g(x(在(-a,+∞(上单调递减,f(0(=ae0-=a-1<0,又x→+∞时,f(x(→+故此时存在x1∈(0,+∞(,使f(x(在(-1,x1(上单调递减,在(x1,+∞(上单调递增,则f(x(有唯一极值点x1∈(0,+∞(,故此时存在x2∈(0,+∞(,使g(x(在(-a,x2(上单调递增,在(x2,+∞(上单调递减,则g(x(有唯一极值点x2∈(0,+∞(,x1=x2=此时需满足x1>x2>0,则ex1>ex2,当a∈(1,+∞(时,f(0(=ae0-=a-1>0,又x→-1时,f(x(→-∞,·13·故此时存在x1∈(-1,0(,使f(x(在(-1,x1(上单调递减,在(x1,+∞(上单调递增,则f(x(有唯一极值点x1∈(-1,0·13· 当a=1时,有f(0(=ae0-=a-1=0,g(0(=-e0=-1=0,>x2>0,则ex2=>e0=1,故0<x2+a<1,g(x(在(-a,x2(上单调递增,在(x2,+∞(上单调递减,则g(x1(<g(x2(=ln(x2+a(-ex2+1=ln(x2+a(-+1,则μ(t(=+>0,故μ(t(在(0,1(则g(x2(=lnt-+1<μ(1(=ln1-+1=0,g(x1(+x2<0,g(x1(+x2<g(x2(+x2=ln(x2+a(-ex2+1+x2=ln-ex2+1+x2=1-ex2<0,>|x2|;>x1>x2,则ex2=<e0=1,即x2+a>1,则g(x1(>g(0(=ln(0+a(-e0+1=lna>0,g(x1(+x2>0,g(x1(+x2=ln(x1+a(-ex+1+x2>ln(x2+a(-ex+1+x2=ln-ex1+1+x2=-x2-ex1+1+x2=1-ex1>1-e0=0,·14··14· k*k(3)Tm=+-⋅3m.=6,=6,k(=pk-pk-1=(p-1(pk-1.于是φ(pq(=pq-1-(p-1(-(q-1(=pq-p-q+1=(p-1((q-1(,m=(5m-3(×3m-1,0+72+⋯+(5m-3(⋅3m-1,3T1+72+123+⋯+(5m-3(⋅3m,2+⋯+5⋅3m-1-(5m-3(⋅3m,所以-2Tm=-(5m-3(⋅3m+2,故Tm=+-⋅3m.(2024·安徽合肥·三模)把满足任意x,y∈R总有f(x+y(+f(x-y(=2f(x(f(y(的函数称为和弦·15··15· f(2(=187令x=n,y=1,n∈N+,则f(n+1(+f(n-1(=2f(n(f(1(=f(n(,2f(n+1(-f(n(=2[2f(n(-f(n-1([,则f(y(+f(-y(=2f(0(f(y(=2f(y(,即f(y(=f(-y(,g(x(是偶函数,x2|=即Cn+1+Cn-1>2Cn,Cn+1>2Cn-Cn-1=Cn+(Cn-Cn-1(>Cn,又g(x(是偶函数,所以有g(x2(>g(x1(.=,|x2|=将问题转化为判断Cn=g(的增减性.成立,则称函数y=f(x(为增函数”.·16··16· (3)设g(x(=ex-ln(x+1(-1,若曲线y=g(x(在x=x0处的切线方程为y=0,求x0的值,并证明函数y=g(x(是增函数”.故函数y=cos故任意的s,t∈(0,+∞(,有3s+t-1-(s+t(-a>3s-1-s-a+3t-1-t-a恒成立,s+t-1-3s-1-3t-1>-a恒成立,所以(3s-1((3t-1(>-a恒成立,t则-a≤0,即a≥.x0(=ex0-可得方程的一个解x0=0,x(=ex+>0,故g/(x(在(0,+∞(上是严格增函数,所以x0=0是唯一解,设w(s(=g(s+t(-g(s(-g(t(,其中s>0,t>0,ws(=g/(s+t(-g/(s(,由y=g/(x(在(0,+∞(上是严格增函数以及s+t>s>0,得g/(s+t(>g/(s(,即w/(s(=g/(s+t(-g/(s(>0,所以w(s(=g(s+t(-g(s(-g(t(在(0,+∞(上是严格增函数,因为s>0,则w(s(>w(0(=g(t(-g(0(-g(t(=0,故g(s+t(>g(s(+g(t(,得证,所以函数y=g·17··17· 如新环序号an-m+1对应的是原环中的a0,⋯,新环序号an-1对应的是原环中的am-2.这就需要用模取余,即f(n+1,m(=(f(n,m(+m(mod(n+1(.·18·f(2,2(=(f(1,2(+2(f(4,2(=(f(3,2(+2(mod4f(6,2(=(f(5,2(+2(mod6=4f(7,2(=(f(6,2(+2(mf(8,2(=(f(7,2(+2(mo·18· ,且0≤t<2k)时推测成立,即f(2k+t,2(=2[(2k+t(mod2k[=2t.k+t+1,2(=(f(2k+t,2(+2(mod(2k+t+1(=(2t+2(mod(2k+t+1(.k-1k+t+1,2(=2t+2=2[(2k+t+1(mod2k[;k-1k+t+1,2(=0,此时2k+t+1=2k+1,即f(2k+1,2(=2(2k+1mod2k+1(.故当n+1=2k+t+1时,推测成立.推测成立.-β|≤1,则称f(x(和g(x(互为“零点相邻函数”.设f(x(=ln(a+x((a∈R(,g(x(=令g(x(=x(x+1(=0,得x1=-1,x2=0,-a-(-1(|≤1,解得1≤a≤3,-a-0|≤1,解得0≤a≤2,(2)h(x(=2x+1-ln(x+a((x>-a),则h/(x(=2-=,令h/(x(=0·19·当-a<x<-a时,h/(x(<0,h(x(单调递减,·19· 所以h(x)min=h-a(=2-2a-ln=2+ln2-2a,min>0,h(x(无零点,min<0,又因为h(1(>0,min<0,又因为h(-1(<0,h(1(>0,(3)当x>0,a=1时,f-<0⇔ln(1+-<0,设t=,则t>0,则ln(1+-<0⇔ln(1+t(-<0⇔·1+tln(1+t(-t<0,21+t设F(t(=1+tln(1+t(-t(t>0),则F/(t(=ln(1+t(+2-21+21+t令p(t(=ln(1+t(+2-2、1+t,t>0,则p/(t(=-1=<0所以p(t(在(0,+∞(上单调递减,·20· 面积(f2(x(-f1(x((dx,其中(dx=-F(3(的值; (2)y=2x-1∴F(2)-F(3)=⋅-π=.·21··21· 则切线方程为y-x=2x0(x-x0(,所以切线与轴的交点为B,0(,联立⇒an=令f(x(=-dx2+,F/(x(=f(x(⇒F(x(=-+C(C为常数), -f(x1)+m[⋅[kx2-f(x2)+m[≥0,则称(k,m)为f(x)f(x)+m≤0.(2)x=-2-2、2为函数f(x(的一个极大值点,x=-2、2为f(x(的一个极小值点.R,代入k=m=0,得:[kx1-f(x1(+m[⋅[kx2-f(x2(+m[=f(x1(⋅f(x2(≥0.·22·x(=(x2+(2+42(x+8+42(ex=(x+22((x+2+22(ex于是可列表如下:·22·x(-∞,-2-2√2(-2-2/2((-2-2/2-2/2(-2/2(-2√2,+∞(f/(x(+0-0+f(x(↗↘↗ ∴x=-2-2、2为函数f(x(的一个极大值点,x=-2、2为f(x(的一个极小值点.∈R,使得kx0-f(x0(+m>0,则对任意x0'∈R,都有[kx0-f(x0(+m[⋅[kx0'-f(x0'(+m[≥0.∴对任意x∈R,kx-f(x(+m≥0恒成立.令F(x(=(x2+ax+、2a(ex-kx-m,则F(x(≤0在R上恒成由二次函数性质可知,必存在t0>0使得当x>t0时,x2+ax+、2a>0恒成立,且此时ex>1,∴当x>t0时有F(x(=(x2+ax+、2a(ex-kx-m>x2+ax+、2a-kx-m,由二次函数性质可知,必存在x1>t0使得当x>x1时,F(x(>x2+ax+、2a-kx-m>0.这与F(x(≤0在R上恒成立矛盾.∴对任意x∈R,都有kx-f(x(+m≤00∈R,使得kx0-f(x0(+m>0,根据和谐数组的定义转化得存在x0∈R,使得kx0-f(x0(+m>0,设F(x(=(x2+ax+、2a(ex-kx-m,通过二次 0=1,e1=x1+x2+x3,e2=x1x2+x2x3+x1x3,e3=x1x2x3.已知三次函数f(x(=a0x3+a1x2-e1P2+e2P1-e3P0=0;k(3)若x1+x2+x3=1,x+x+x=2,x+x+x=3,求x+x+x.(3)x+x+x=6.【详解】(1)证明:f(x(=(x-x1((x-x2((x-x3(·23·=x3-(x1+x2+x3(x2+(x1x2+x2x3+x1x3(x-x1x2x3,0=1=e0,a1=-(x1+x2+x3(=-e1,a2=e2,a3=-e3,·23· (i)由①+②+③得P3-e1P2+e2P1-3e3=P3-e1P2+e2P1-e3P0=0.④+⑤+⑥得Pm-e1Pm-1+e2Pm-2-e3Pm-3=0,1=P1=1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《安全感悟分享》课件
- 《职业适应与发展》课件
- 《生产安全事故应急》课件
- 2024教师发言稿(34篇)
- 艺术与人生和社会的关系
- 单位管理制度汇编大全【人事管理】
- 单位管理制度分享合集【人员管理篇】十篇
- 单位管理制度分享大合集【人员管理】十篇
- 单位管理制度范文大合集【员工管理篇】十篇
- 单位管理制度呈现大全【人员管理】
- 安全生产培训法律法规
- 广东省广州市2021-2022学年高二上学期期末五校联考生物试题
- 2024年领导干部任前廉政知识考试测试题库及答案
- 2023-2024学年浙江省宁波市镇海区四年级(上)期末数学试卷
- 舞蹈演出编导排练合同模板
- 融资合作法律意见
- 污水泵站运营维护管理方案
- 中医辨证-八纲辨证(中医学课件)
- 冠脉介入进修汇报
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 生涯发展展示
评论
0/150
提交评论