2022届衡水中学高三第三次测评数学试卷含解析_第1页
2022届衡水中学高三第三次测评数学试卷含解析_第2页
2022届衡水中学高三第三次测评数学试卷含解析_第3页
2022届衡水中学高三第三次测评数学试卷含解析_第4页
2022届衡水中学高三第三次测评数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.2.函数与在上最多有n个交点,交点分别为(,……,n),则()A.7 B.8 C.9 D.103.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.4.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知集合,集合,则()A. B. C. D.6.已知函数,则下列结论中正确的是①函数的最小正周期为;②函数的图象是轴对称图形;③函数的极大值为;④函数的最小值为.A.①③ B.②④C.②③ D.②③④7.的展开式中的常数项为()A.-60 B.240 C.-80 D.1808.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为()A. B. C. D.9.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.10.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}12.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13.二项式的展开式的各项系数之和为_____,含项的系数为_____.14.设数列的前n项和为,且,若,则______________.15.设等差数列的前项和为,若,,则______,的最大值是______.16.已知直角坐标系中起点为坐标原点的向量满足,且,,,存在,对于任意的实数,不等式,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.18.(12分)在数列和等比数列中,,,.(1)求数列及的通项公式;(2)若,求数列的前n项和.19.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且.(Ⅰ)求证:面;(Ⅱ)求证:平面平面;(Ⅲ)求该几何体的体积.20.(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.21.(12分)如图,在直三棱柱中,分别是中点,且,.求证:平面;求点到平面的距离.22.(10分)如图,四棱锥中,侧面为等腰直角三角形,平面.(1)求证:平面;(2)求直线与平面所成的角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.2.C【解析】

根据直线过定点,采用数形结合,可得最多交点个数,然后利用对称性,可得结果.【详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.3.D【解析】

根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.4.C【解析】

根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒logab<1,logab<1⇒a>b,∴a>b是logab<1的充分必要条件,故选C.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.5.C【解析】

求出集合的等价条件,利用交集的定义进行求解即可.【详解】解:∵,,∴,故选:C.【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.6.D【解析】

因为,所以①不正确;因为,所以,,所以,所以函数的图象是轴对称图形,②正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可.当时,,且,令,得,可知函数在处取得极大值为,③正确;因为,所以,所以函数的最小值为,④正确.故选D.7.D【解析】

求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.8.D【解析】

设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【详解】解:设,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故选:D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.9.D【解析】

利用复数代数形式的乘除运算化简,再由实部为求得值.【详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.10.B【解析】

或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.11.B【解析】

按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.12.A【解析】

根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【详解】若“是递增数列”,则,即,化简得:,又,,,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件.故选:.【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.【详解】将代入二项式可得展开式各项系数和为.二项式的展开式通项为,令,解得,因此,展开式中含项的系数为.故答案为:;.【点睛】本题考查了二项式定理及二项式展开式通项公式,属基础题.14.9【解析】

用换中的n,得,作差可得,从而数列是等比数列,再由即可得到答案.【详解】由,得,两式相减,得,即;又,解得,所以数列为首项为-3、公比为3的等比数列,所以.故答案为:9.【点睛】本题考查已知与的关系求数列通项的问题,要注意n的范围,考查学生运算求解能力,是一道中档题.15.【解析】

利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),,令,则且,,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题.16.【解析】

由题意可设,,,由向量的坐标运算,以及恒成立思想可设,的最小值即为点,到直线的距离,求得,可得不大于.【详解】解:,且,可设,,,,可得,可得的终点均在直线上,由于为任意实数,可得时,的最小值即为点到直线的距离,可得,对于任意的实数,不等式,可得,故答案为:.【点睛】本题主要考查向量的模的求法,以及两点的距离的运用,考查直线方程的运用,以及点到直线的距离,考查运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】试题分析:(1)因为AB⊥AC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;

(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标.试题解析:解(1)如图,以为原点建立空间直角坐标系,则,.,故与棱所成的角是.(2)为棱中点,设,则.设平面的法向量为,,则,故而平面的法向量是,则,解得,即为棱中点,其坐标为.点睛:本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.(1),(2)【解析】

(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即可.【详解】解:(1)依题意,,设数列的公比为q,由,可知,由,得,又,则,故,又由,得.(2)依题意.,①则,②①-②得,即,故.【点睛】本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题.19.(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ).【解析】

(I)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(II)利用,证得平面,从而得到平面,由此证得平面平面.(III)作交于点,易得面,利用棱锥的体积公式,计算出棱锥的体积.【详解】(Ⅰ)取的中点,连接,则,,故四边形为平行四边形.故.又面,平面,所以面.(Ⅱ)为等边三角形,为中点,所以.又,所以面.又,故面,所以面平面.(Ⅲ)几何体是四棱锥,作交于点,即面,.【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查四棱锥体积的求法,考查空间想象能力,所以中档题.20.(1)(2)是定值,且定值为2【解析】

(1)设出点坐标并代入椭圆方程,根据列方程,求得的值,结合求得的值,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆方程,求得点的横坐标,联立直线的方程和椭圆方程,求得,由此化简求得为定值.【详解】(1)已知点在椭圆:()上,可设,即,又,且,可得椭圆的方程为.(2)设直线的方程为:,则直线的方程为.联立直线与椭圆的方程可得:,由,可得,联立直线与椭圆的方程可得:,即,即.即为定值,且定值为2.【点睛】本小题主要考查本小题主要考查椭圆方程的求法,考查椭圆中的定值问题的求解,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.21.(1)详见解析;(2).【解析】

(1)利用线面垂直的判定定理和性质定理即可证明;(2)取中点为,则,证得平面,利用等体积法求解即可.【详解】(1)因为,,,是的中点,,为直三棱柱,所以平面,因为为中点,所以平面,,又,平面(2),又分别是中点,.由(1)知,,又平面,取中点为,连接如图,则,平面,设点到平面的距离为,由,得,即,解得,点到平面的距离为.【点睛】本题考查线面垂直的判定定理和性质定理、等体积法求点到面的距离;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定定理和性质定理是求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论