版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为定义在上的偶函数,当时,,则()A. B. C. D.2.数列{an},满足对任意的n∈N+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=()A.132 B.299 C.68 D.993.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则A. B. C. D.4.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立5.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.23 B.21 C.35 D.326.函数在上的大致图象是()A. B.C. D.7.在中,,则=()A. B.C. D.8.记等差数列的公差为,前项和为.若,,则()A. B. C. D.9.设为虚数单位,为复数,若为实数,则()A. B. C. D.10.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=A.3 B.2C.3 D.611.已知平面向量,满足,,且,则()A.3 B. C. D.512.已知的展开式中的常数项为8,则实数()A.2 B.-2 C.-3 D.3二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的系数为________.14.若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有___________.(填上所有正确答案的序号)①,,;②,,;③,,;④,,.15.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.16.已知数列中,为其前项和,,,则_________,_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数f(x)=x2−4xsinx−4cosx.(1)讨论函数f(x)在[−π,π]上的单调性;(2)证明:函数f(x)在R上有且仅有两个零点.18.(12分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.19.(12分)如图,在直三棱柱中,,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.20.(12分)求函数的最大值.21.(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.22.(10分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
判断,利用函数的奇偶性代入计算得到答案.【详解】∵,∴.故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.2.B【解析】
由为定值,可得,则是以3为周期的数列,求出,即求.【详解】对任意的,均有为定值,,故,是以3为周期的数列,故,.故选:.【点睛】本题考查周期数列求和,属于中档题.3.B【解析】
由题意知,,由,知,由此能求出.【详解】由题意知,,,解得,,.故选:B.【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.4.A【解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.5.B【解析】
根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.6.D【解析】
讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.7.B【解析】
在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.8.C【解析】
由,和,可求得,从而求得和,再验证选项.【详解】因为,,所以解得,所以,所以,,,故选:C.【点睛】本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.9.B【解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题10.A【解析】
由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y=±22x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=±答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.11.B【解析】
先求出,再利用求出,再求.【详解】解:由,所以,,,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.12.A【解析】
先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.30【解析】
先将问题转化为二项式的系数问题,利用二项展开式的通项公式求出展开式的第项,令的指数分别等于2,4,求出特定项的系数.【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题.14.①②④【解析】
由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对①,③,④都可以采用此法判断,对②分析式子特点可知,,进而判断【详解】①时,令,则,单调递增,,即.令,则,单调递减,,即,因此,满足题意.②时,易知,满足题意.③注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为,易知,,因此不存在直线满足题意.④时,注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:①②④【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题15.【解析】试题分析:根据题意,记白球为A,红球为B,黄球为,则一次取出2只球,基本事件为、、、、、共6种,其中2只球的颜色不同的是、、、、共5种;所以所求的概率是.考点:古典概型概率16.8(写为也得分)【解析】
由,得,.当时,,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.见解析【解析】
(1)f(x)=2x−4xcosx−4sinx+4sinx=,由f(x)=1,x∈[−π,π]得x=1或或.当x变化时,f(x)和f(x)的变化情况如下表:x1f(x)−1+1−1+f(x)单调递减极小值单调递增极大值单调递减极小值单调递增所以f(x)在区间,上单调递减,在区间,上单调递增.(2)由(1)得极大值为f(1)=−4;极小值为f()=f()<f(1)<1.又f(π)=f(−π)=π2+4>1,所以f(x)在,上各有一个零点.显然x∈(π,2π)时,−4xsinx>1,x2−4cosx>1,所以f(x)>1;x∈[2π,+∞)时,f(x)≥x2−4x−4>62−4×6−4=8>1,所以f(x)在(π,+∞)上没有零点.因为f(−x)=(−x)2−4(−x)sin(−x)−4cos(−x)=x2−4xsinx−4cosx=f(x),所以f(x)为偶函数,从而x<−π时,f(x)>1,即f(x)在(−∞,−π)上也没有零点.故f(x)仅在,上各有一个零点,即f(x)在R上有且仅有两个零点.18.(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中点,则,而平面平面,而,∴平面.(Ⅱ)根据三棱锥的体积公式,得.【点睛】本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.19.(1)见解析(2)见解析【解析】
(1)取的中点D,连结,.根据线面平行的判定定理即得;(2)先证,,和都是平面内的直线且交于点,由(1)得,再结合线面垂直的判定定理即得.【详解】(1)取的中点D,连结,.在中,P,D分别为,中点,,且.在直三棱柱中,,.Q为棱的中点,,且.,.四边形为平行四边形,从而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D为中点,.由(1)知,,.又,平面,平面,平面.【点睛】本题考查线面平行的判定定理,以及线面垂直的判定定理,难度不大.20.【解析】
试题分析:由柯西不等式得试题解析:因为,所以.等号当且仅当,即时成立.所以的最大值为.考点:柯西不等式求最值21.(1)(2)【解析】
(1)利用正弦定理化简已知条件,由此求得的值,进而求得的大小.(2)利用正弦定理和两角差的正弦公式,求得的表达式,进而求得的取值范围.【详解】(1)由题设知,,即,所以,即,又所以.(2)由题设知,,即,又为锐角三角形,所以,即所以,即,所以的取值范围是.【点睛】本小题主要考查利用正弦定理解三角形,考查利用角的范围,求边的比值的取值范围,属于中档题.22.(1)(2)直线恒过定点,详见解析【解析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考地理一轮复习专练63河流流域的综合开发与治理含解析新人教版
- 2025高考数学考二轮专题突破练1 常考小题点过关检测-专项训练【含答案】
- 2024年清远职业技术学院高职单招语文历年参考题库含答案解析
- 预防校园性侵害工作制度
- 2024年浙江汽车职业技术学院高职单招语文历年参考题库含答案解析
- 2024年陕西地质矿产局职工医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年泰州职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年防城港务局职工医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年阜新市妇产医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年江西旅游商贸职业学院高职单招语文历年参考题库含答案解析
- 表内乘除法口算l练习题1200道a4打印
- 《EICC培训讲义》课件
- 2025年四川省政府直属事业单位招聘管理单位笔试遴选500模拟题附带答案详解
- 2024年物业公司服务质量保证合同条款
- 文言文阅读之理解实词含义(讲义)-2025年中考语文专项复习
- 豪迈CutRite V9板材优化软件学习教材
- 医学课件三叉神经痛3
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-上(单选题)
- 鹧鸪山隧道瓦斯地段专项施工方案
- HG∕T 2058.1-2016 搪玻璃温度计套
- 九宫数独200题(附答案全)
评论
0/150
提交评论