




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.活动课上,小华将两张直角三角形纸片如图放置,已知AC=8,O是AC的中点,△ABO与△CDO的面积之比为4:3,则两纸片重叠部分即△OBC的面积为()A.4 B.6 C.2 D.22.如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()A.1个; B.2个;C.3个; D.4个.3.下列运算正确的是().A.a2•a3=a6 B.5a﹣2a=3a2 C.(a3)4=a12 D.(x+y)2=x2+y24.如图,中,的垂直平分线与的角平分线相交于点,垂足为点,若,则()A. B. C. D.不能确定5.若关于x的方程无解,则a的值是()A.1 B.2 C.-1或2 D.1或26.如图,AD是△ABC的中线,点E、F分别是射线AD上的两点,且DE=DF,则下列结论不正确的是()A.△BDF≌△CDE B.△ABD和△ACD面积相等C.BF∥CE D.AE=BF7.若方程组的解是,则的值分别是()A.2,1 B.2,3 C.1,8 D.无法确定8.在平面直角坐标系中,点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.要使二次根式有意义,字母的取值范围是()A.x≥ B.x≤ C.x> D.x<10.一辆装满货物,宽为米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米 B.4.0米 C.3.9米 D.3.8米11.如图,x轴是△AOB的对称轴,y轴是△BOC的对称轴,点A的坐标为(1,2),则点C的坐标为()A.(-1,-2) B.(1,-2) C.(-1,2) D.(-2,-1)12.下列四个图案中,是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.14.如图,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=________时,形成的Rt△ABP与Rt△PCD全等.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为_____度.16.如图,在中,已知点,,分别为,,的中点,且,则阴影部分的面积______.17.如图,在中,已知的垂直平分线与分别交于点如果那么的度数等于____________________.
18.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.三、解答题(共78分)19.(8分)某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)6045租金(元/辆)550450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元.20.(8分)(1)化简:;(2)化简分式:,并从中选一个你认为适合的整数代人求值.21.(8分)已知:如图,把向上平移个单位长度,再向右平移个单位长度,得到;(1)写出的坐标;(2)求出的面积;(3)点在轴上,且与的面积相等,求点的坐标.22.(10分)如图1,已知直线AO与直线AC的表达式分别为:和.(1)直接写出点A的坐标;(2)若点M在直线AC上,点N在直线OA上,且MN//y轴,MN=OA,求点N的坐标;(3)如图2,若点B在x轴正半轴上,当△BOC的面积等于△AOC的面积一半时,求∠ACO+∠BCO的大小.23.(10分)已知,在中,,如图,点为上的点,若.(1)当时,求的度数;(2)当时,求的长;(3)当,时,求.24.(10分)已知:如图,点在同一条直线上,求证:25.(12分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.26.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
参考答案一、选择题(每题4分,共48分)1、D【分析】先根据直角三角形的性质可求出OB、OC、OA的长、以及的面积等于的面积,再根据题中两三角形的面积比可得OD的长,然后由勾股定理可得CD的长,最后根据三角形的面积公式可得出答案.【详解】在中,,O是AC的中点的面积等于的面积与的面积之比为与的面积之比为又,即在中,故选:D.【点睛】本题考查了直角三角形的性质(斜边上的中线等于斜边的一半)、勾股定理等知识点,根据已知的面积之比求出OD的长是解题关键.2、C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
①∵AC⊥BD,∴新的四边形成为矩形,符合条件;②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.∵C△ABO=C△CBO,∴AB=BC.根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.∵∠DAO=∠CBO,∴∠ADO=∠DAO.∴AO=OD.∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④∵∠DAO=∠BAO,BO=DO,∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选C.【点睛】本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.3、C【解析】试题分析:选项A,根据同底数幂的乘法可得a2•a3=a5,故此选项错误;选项B,根据合并同类项法则可得5a﹣2a=3a,故此选项错误;选项C,根据幂的乘方可得(a3)4=a12,正确;选项D,根据完全平方公式可得(x+y)2=x2+y2+2xy,故此选项错误;故答案选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.4、B【分析】首先过点D作DF⊥AB于E,DF⊥AC于F,易证得Rt△DEB≌Rt△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180°,即可求得答案.【详解】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故选:B.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.5、A【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得a的值.【详解】解:方程两边同乘,得,
,
∵关于的方程无解,
∴,,
解得:,,
把代入,得:,
解得:,综上,,
故答案为:1.【点睛】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案.6、D【解析】利用SAS判定△BDF≌△CDE,即可一一判断;【详解】解:∵AD是△ABC的中线,
∴BD=CD,
∴S△ABD=S△ADC,故B正确,
在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故A正确;
∴CE=BF,
∵△BDF≌△CDE(SAS),
∴∠F=∠DEC,
∴FB∥CE,故C正确;
故选D.【点睛】此题主要考查了全等三角形判定和性质,解题的关键是正确寻找全等三角形解决问题.7、B【分析】方程组的解就是能够使方程组中的方程同时成立的未知数的解,把方程组的解代入方程组即可得到一个关于m,n的方程组,即可求得m,n的值.【详解】根据题意,得,解,得m=2,n=1.故选:B.【点睛】本题主要考查了方程组解的定义,方程组的解就是能够使方程组中的方程同时成立的未知数的解.8、B【分析】根据各象限内点的坐标特征解答.第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】点在第二象限.故选B.【点睛】此题考查象限及点的坐标的有关性质,解题关键在于掌握其特征.9、B【解析】二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤,故选B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10、A【分析】根据题意欲通过如图的隧道,只要比较距厂门中线米处的高度比车高即可,根据勾股定理得出的长,进而得出的长,即可得出答案.【详解】车宽米,欲通过如图的隧道,只要比较距厂门中线米处的高度与车高,在中,由勾股定理可得:(),米,卡车的外形高必须低于米.故选:.【点睛】此题主要考查了垂径定理和勾股定理的应用,根据题意得出的长是解题关键.11、A【分析】先利用关于x轴对称的点的坐标特征得到B(1,-2),然后根据关于y轴对称的点的坐标特征易得C点坐标.【详解】∵x轴是△AOB的对称轴,∴点A与点B关于x轴对称,而点A的坐标为(1,2),∴B(1,-2),∵y轴是△BOC的对称轴,∴点B与点C关于y轴对称,∴C(-1,-2).故选:A.【点睛】本题考查了坐标与图形变化之对称:关于x轴对称,横坐标相等,纵坐标互为相反数;关于y轴对称,纵坐标相等,横坐标互为相反数;关于直线x=m对称,则P(,b)⇒P(2m-,b),关于直线y=n对称,P(,b)⇒P(,2n-b).12、D【解析】根据轴对称图形的定义,即可得到答案.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的定义,解题的关键是熟记定义.二、填空题(每题4分,共24分)13、.【解析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.【详解】过点O作OD⊥BC,OG⊥AC,垂足分别为D,G,由题意可得:O是△ACB的内心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四边形OGCD是正方形,∴DO=OG==1,∴CO=.故答案为.【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.14、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=8可得CP=6,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【详解】当BP=1时,Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=1,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角.15、1【解析】设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形,则这个三角形中最大的角为1度,故答案为:1.16、.【分析】根据AD为△ABC中线可知S△ABD=S△ACD,又E为AD中点,故,S△BEC=S△ABC,根据BF为△BEC中线,可知.【详解】由题中E、D为中点可知,S△BEC=S△ABC又为的中线,∴.【点睛】本题考查了三角形中线的性质,牢固掌握并会运用即可解题.17、45°【分析】由AB=AC,∠A=30°,可求∠ABC,由DE是AB的垂直平分线,有AD=BD,可求∠ABD=30º,∠DBC=∠ABC-∠ABD计算即可.【详解】∵AB=AC,∠A=30°,∴∠ABC=∠ACB=,又∵DE是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=30º,∴∠DBC=∠ABC-∠ABD=75º-30º=45º.故答案为:45º.【点睛】本题考查角度问题,掌握等腰三角形的性质,会用顶角求底角,掌握线段垂直平分线的性质,会用求底角,会计算角的和差是解题关键.18、2【分析】根据定义即可求出答案.【详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.三、解答题(共78分)19、(1)y=100x+3150;(2)5,1.【分析】(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;(2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.【详解】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=1(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是1元.20、(1);(2),x=3时,【分析】(1)根据分式的减法和除法法则即可化简题目中的式子;(2)根据分式的减法和除法可以化简题目中的式子,再从中选取一个使得原分式有意义的整数代入即可解答本题.【详解】解:(1)原式;(2)原式,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21、(1)A′(0,4)、B′(-1,1)、C′(3,1);(2)6;(3)P(0,1)或(0,-5).【分析】(1)观察图形可得△ABC的各顶点坐标,继而根据上加下减,左减右加即可得到平移后对应点A′、B′、C′的坐标;即可得到△A′B′C′;(2)直接利用三角形面积公式根据BC以及BC边上的高进行求解即可;(3)由△BCP与△ABC的面积相等可知点P到BC的距离等于点A到BC的距离,据此分情况求解即可.【详解】(1)观察图形可得A(-2,1),B(-3,-2),C(1,-2),因为把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′,所以A′(-2+2,1+3)、B′(-3+2,-2+3)、C′(1+2,-2+3),即A′(0,4)、B′(-1,1)、C′(3,1);(2)S△ABC===6;(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=-3,解得y1=1,y2=-5,∴P(0,1)或(0,-5).【点睛】本题考查了图形的平移,三角形的面积,熟练掌握平移的规律“上加下减,左减右加”是解题的关键.22、(1)A点的坐标为(4,2);(2)N的坐标为(),();(3)∠ACO+∠BCO=45°【分析】(1)利用直线AO与直线AC交点为A即可求解;(2)先求出MN的长,再设设M的坐标为(a,2a-6),则则N的坐标为(a,),表示出MN的长度解方程即可;(3)作∠GCO=∠BCO,把∠ACO+∠BCO转化成∠ACG。题目条件没出现具体角度,但结论又要求角度的,这个角度一定是一个特殊角,即∠ACG的度数一定是个特殊角;即∠ACG处于一个特殊的三角形中,于是有了作DE⊥GC的辅助线思路,运用勾股定理知识即可解答.【详解】(1)联立和得:解得A点的坐标为(4,2);(2)∵A点的坐标为(4,2)∴OA=,∴MN=OA=2,∵点M在直线AC上,点N在直线OA上,且MN//y轴,∴设M的坐标为(a,2a-6),则N的坐标为(a,),则存在以下两种情况:①当M在N点下方时,如图3,
则MN=-(2a-6)=2,解得a=,∴N点的坐标为();②当M在N点上方时,如图4,
则MN=(2a-6)-=2,解得a=,∴N点的坐标为();综上所述,N的坐标为(),()(3)∵△BOC与△AOC有相同的底边OC,∴当△BOC的面积等于△AOC的面积一半时,△BOC的高OB的长度是△AOC的高的一半,∴OB=2,设直线AC与x轴的交点为点D,则D(3,0),作点B关于y轴的对称点G,则OG=0B=2,GD=5,∠BCO=∠GCO,则∠ACO+∠BCO=∠ACO+∠GCO=∠ACG,连接GC,作DE⊥GC于点E,如图5
由勾股定理可得:GC=,DC=,在△CGD中,由等面积法可得:OC•DG=DE•GC,可得DE=,在Rt△DEC中,由勾股定理可得EC=,∴ED=EC,∴∠ECD=45°,即∠ACO+∠BCO=45°.【点睛】本题考查一次函数的综合运用,坐标结合勾股定理计算边长是解题的关键.23、(1)∠CAD=55°;(2);(3)S△ABC=16【分析】(1)通过同角的余角相等,解得;(2)通过勾股定理求出AC的长,再利用三角形的面积公式求出AD的长;(3)通过等腰直角三角形的性质求出BC和AD的长度,即可求出△ABC的面积.【详解】(1)∵∴∵∴∴∴(2)∵∴在中,根据勾股定理得∵∴∴解得(3)∵,∴∴是等腰直角三角形∵∴AD垂直平分BC,∴,∴【点睛】本题考查了三角形的综合问题,掌握同角的余角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车库资产抵押担保合同规范文本
- 残疾人就业支持与职业培训合作协议
- 茶叶电商培训与人才输送合作协议
- 特色美食餐厅服务员劳动合同书
- 景区观光出租车包车合同范本-深度游体验协议
- 高速公路服务区车位包销及旅游观光合作协议
- 西餐厅餐饮服务承包协议
- 厂房租赁及生产线技术输出合同范本
- 住宅区拆迁房产权互换协议
- 网络订餐平台食品安全责任书
- 杏树的日常护理措施
- 高迪 圣家族大教堂赏析课件
- 敏捷项目管理的敏捷团队文化
- 关于城乡幼儿园教育差异的调研报告
- 《弹簧设计基础知识》课件
- 广西南宁市二中2024届物理高一下期末质量检测模拟试题含解析
- 美术遗存的保护与传承
- 执业药师课件
- TB10092-2017 铁路桥涵混凝土结构设计规范
- 小学学科教育中的全面素质与个性发展培养
- 青年教师培养方案
评论
0/150
提交评论