版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①② B.②③ C.①②③ D.①②③④2.下列各数组中,不是勾股数的是()A.,, B.,,C.,, D.,,(为正整数)3.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.-2 C.-1 D.24.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A. B.2 C. D.5.使分式有意义的条件是()A.x≠0 B.x=-3 C.x≠-3 D.x>-3且x≠06.已知,则的值是()A. B. C.1 D.7.一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5 B.10 C.25 D.±258.直线沿轴向下平移个单位后,图象与轴的交点坐标是()A. B. C. D.9.一汽艇保持发动机的功率不变,它在相距30千米的两码头之间流动的河水中往返一次(其中汽艇的速度大于河水流动的速度)所用的时间是t1,它在平静的河水中行驶60千米所用的时间是t2,则t1与t2的关系是()A.t1>t2 B.t1<t2 C.t1=t2 D.以上均有可能10.如图,在△ABC中,∠BAC=80°,∠C=70°,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠DAC的度数为()A.60° B.50° C.40° D.30°11.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣112.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,,,,,分别对应下列六个字:海、爱、我、美、游、北,现将因式分解,结果呈现的密码信息可能是()A.我爱游 B.北海游 C.我爱北海 D.美我北海二、填空题(每题4分,共24分)13.平行四边形ABCD中,,对角线,另一条对角线BD的取值范围是_____.14.已知等腰三角形两边长为5、11,则此等腰三角形周长是_________________________.15.如图,A.B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有______个.16.已知实数,0.16,,,其中为无理数的是_________.17.若,则代数式的值为___________.18.计算:_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)通过平移,使移动到原点的位置,画出平移后的.(3)在中有一点,则经过以上两次变换后点的对应点的坐标为.20.(8分)如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C落在G处,PG交BC于H,折痕为EF.连接OP、OH.初步探究(1)当AP=4时①直接写出点E的坐标;②求直线EF的函数表达式.深入探究(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.拓展应用(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.21.(8分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;(2)△ABC的面积为______;(3)判断△ABC的形状,并说明理由.22.(10分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价/(元/盏)售价/(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?23.(10分)已知a、b是实数.(1)当+(b+5)2=0时,求a、b的值;(2)当a、b取(1)中的数值时,求(-)÷的值.24.(10分)如图,平分,平分外角,.(1)求证:;(2)若,求的度数.25.(12分)利用乘法公式计算:26.为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪的处,过了后,小汽车到达离车速检测仪的处,已知该段城市街道的限速为,请问这辆小汽车是否超速?
参考答案一、选择题(每题4分,共48分)1、C【分析】证明≌,得出,正确;由,得出,正确;证出,,正确;由,不能确定,不正确;即可得出答案.【详解】解:∵∠CAE=90°,AE=AC,∴∠E=∠ACE=45°,∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACF=∠E=45°,①正确;∵S四边形ABCD=S△ABC+S△ACD,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.2、C【解析】判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A、62+82=102,三边是正整数,能构成直角三角形,故是勾股数,此选项错误;B、92+402=412,三边是正整数,能构成直角三角形,故是勾股数,此选项错误;
C、82+122≠152,不是勾股数,此选项正确;
D、(5k)2+(12k)2=(13k)2,三边是正整数,能构成直角三角形,故是勾股数,此选项错误.
故选:C.【点睛】此题主要考查了勾股数,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3、C【解析】试题分析:依据多项式乘以多项式的法则,进行计算(x+2)(x-1)=+x﹣2=+mx+n,然后对照各项的系数即可求出m=1,n=﹣2,所以m+n=1﹣2=﹣1.故选C考点:多项式乘多项式4、A【解析】∵△ABC是等边三角形,∴∠B=∠BCA=60°,AC=BC=AB,又∵AD=BE,∴AB-AD=BC-BE,即BD=CE,∴△ACE≌△CBD,∴∠CAE=∠BCD,又∵∠AFG=∠ACF+∠CAE,∴∠AFG=∠ACF+∠CAE=∠ACF+∠BCD=∠BCA=60°,∵AG⊥CD于点G,∴∠AGF=90°,∴∠FAG=30°,∴FG=AF,∴.故选A.5、C【解析】分式有意义,分母不等于零,由此解答即可.【详解】根据题意得:x+1≠0,解得:x≠﹣1.故选C.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.6、D【解析】令,得到:a=2k、b=3k、c=4k,然后代入即可求解.【详解】解:令得:a=2k、b=3k、c=4k,.故选D.【点睛】本题考查了比例的性质,解题的关键是用一个字母表示出a、b、c,然后求值.7、C【解析】一个正数的平方根为2x+1和x−7,∴2x+1+x−7=0x=2,2x+1=5(2x+1)2=52=25,故选C.8、D【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【详解】直线沿轴向下平移个单位则平移后直线解析式为:当y=0时,则x=2,故平移后直线与x轴的交点坐标为:(2,0).故选:D.【点睛】此题主要考查了一次函数平移变换,熟练掌握一次函数平移规律是解题关键.9、A【分析】设汽艇在静水中的速度为a千米/小时,水速为b千米/小时,根据题意列出算式,然后再比较大小即可.【详解】汽艇在静水中所用时间t1.汽艇在河水中所用时间t1.∵t1-t1=0,∴,∴t1>t1.故选A.【点睛】本题考查了分式的减法,根据题意列出汽艇在静水中和河水中所用时间的代数式是解题的关键.10、B【分析】根据三角形内角和定理求出∠B=30°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】解:∵∠BAC=80°,∠C=70°,∴∠B=30°由作图可知:MN垂直平分线段AB,可得DA=DB,则∠DAB=∠B=30°,故∠DAC=80°-30°=50°,故选:B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.11、D【详解】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选D.【点睛】本题考查1、负指数幂;2、零指数幂;3、绝对值;4、乘方,计算难度不大.12、C【解析】原式提取公因式,再利用平方差公式分解,确定出密码信息即可.【详解】原式=2(x+y)(x−y)(a−b),则呈现的密码信息可能是我爱北海,故选C【点睛】此题考查提公因式法与公式法的综合运用,因式分解的应用,解题关键在于掌握运算法则.二、填空题(每题4分,共24分)13、【分析】根据四边形和三角形的三边关系性质计算,即可得到答案.【详解】如图,平行四边形ABCD对角线AC和BD交于点O∵平行四边形ABCD,∴中或∴或∵不成立,故舍去∴∴∵∴.【点睛】本题考查了平行四边形、三角形的性质;解题的关键是熟练掌握平行四边形对角线、三角形三边关系的性质,从而完成求解.14、1【分析】根据等腰三角形腰的情况分类讨论,然后根据三角形的三边关系进行取舍,即可求出等腰三角形周长.【详解】解:若等腰三角形的腰长为5时∵5+5<11∴5、5、11构不成三角形,舍去;若等腰三角形的腰长为11时∵5+11>11∴5、11、11能构成三角形此时等腰三角形周长是5+11+11=1故答案为:1.【点睛】此题考查的是已知等腰三角形的两边求周长,掌握三角形的三边关系、等腰三角形的定义、分类讨论的数学思想是解决此题的关键.15、9【解析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.16、【分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,即可判定.【详解】由已知,得其中为无理数的是,故答案为.【点睛】此题主要考查对无理数的理解,熟知概念,即可解题.17、1【分析】将因式分解,然后代入求值即可.【详解】解:==将代入,得原式=故答案为:1.【点睛】此题考查的是因式分解,掌握利用提取公因式法和完全平方公式因式分解是解决此题的关键.18、【解析】根据零指数幂与负指数幂的公式计算即可.【详解】=1-=.【点睛】此题主要考查零指数幂与负指数幂的计算,解题的关键是熟知公式的运用.三、解答题(共78分)19、(1)图见解析;(2)图见解析;(3)【分析】(1)先分别找到A、B、C关于x轴的对称点,然后连接、、即可;(2)先判断移动到原点的位置时的平移规律,然后分别将、按此规律平移,得到、,连接、、即可;(3)根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到,然后根据(2)中的平移规律即可得到的坐标.【详解】解:(1)先分别找到A、B、C关于x轴的对称点,然后连接、、,如下图所示:即为所求(2)∵∴∴到点O(0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将、按此规律平移,得到、,连接、、,如图所示,即为所求;(3)由(1)可知,经过第一次变化后为然后根据(2)的平移规律,经过第二次变化后为故答案为:.【点睛】此题考查的是画已知图形关于x轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x轴对称图形画法、平移后的图形画法、关于x轴对称两点坐标规律和坐标的平移规律是解决此题的关键.20、(1)①(0,5);②;(2)理由见解析;(3)周长=1,不会发生变化,证明见解析.【分析】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即可求解;②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.【详解】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+1,解得:a=5,故点E(0,5).故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线EF的表达式为:y=﹣x+5;(2)∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC,∴∠APO=∠OPH;(3)如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO=∠OPH,在△AOP和△QOP中,∴△AOP≌△QOP(AAS),∴AP=QP,AO=OQ.又∵AO=OC,∴OC=OQ.又∵∠C=∠OQH=90°,OH=OH,∴△OCH≌△OQH(SAS),∴CH=QH,∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=1.故答案为:1.【点睛】此题主要考查了翻折变换的性质、正方形的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.21、(1)(-2,-1);(2)5;(3)△ABC是直角三角形,∠ACB=90°.【解析】(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【详解】解:(1)则B的坐标是(-2,-1).故答案是(-2,-1);(2)S△ABC=4×4-×4×2-×3×4-×1×2=5,故答案是:5;(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.【点睛】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.22、(1)75盏;25盏(2)购进A型台灯20盏,B型台灯80盏;1元【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x+50(100﹣x)=3500∴x=75∴100﹣x=25答:购进A型台灯75盏,购进B型台灯25盏;(2)设商场销售完这批台灯可获利y元,y=15x+20(100﹣x)=﹣5x+2000又∵100﹣x≤4x,∴x≥20∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024常年物资采购协议范本
- 2024年舞台搭建项目专用协议协议
- 2024家庭水电安装项目协议范本
- 2024年化建筑砂浆采购协议范本
- 2024年活鸡买卖双方权益保障协议
- 2024建设项目用电合作协议
- 2024年学生违纪行为处理协议
- 2024水电项目专用材料采购协议范本
- 2024年设备采购协议模板2
- 2024年度视频制作项目协议格式
- 人教精通版英语五上Unit5《Isthisyourschoolbag》教案
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题精华集选附答案
- 互联网医院整体方案介绍-PPT
- 《化学与生活》课程标准
- 能源管理知识培训讲义
- 老旧小区现状调查调查表
- 生命科学导论(中国农业大学)知到章节答案智慧树2023年
- 企业采购管理现状、问题及完善策略-以正泰电器集团为例(论文)
- 晋升管理制度完整版
- 优质护理服务评价细则-
- 加强供电企业青年员工培养模式优化措施
评论
0/150
提交评论