




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知三角形两边长分别为5cm和16cm,则下列线段中能作为该三角形第三边的是()A.24cm B.15cm C.11cm D.8cm2.一次函数的图象经过点,且随的增大而减小,则的值是().A.2 B. C.0 D.3.如图,∠AOB=60°,OC平分∠AOB,P为射线OC上一点,如果射线OA上的点D,满足△OPD是等腰三角形,那么∠ODP的度数为()A.30° B.120°C.30°或120° D.30°或75°或120°4.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.5.已知x2-ax+16可以写成一个完全平方式,则可为()A.4 B.8 C.±4 D.±86.如图,AC、BD相交于点O,OA=OB,OC=OD,则图中全等三角形的对数是().A.1对 B.2对 C.3对 D.4对7.正五边形ABCDE中,∠BEC的度数为()
A.18° B.30° C.36° D.72°8.如图,是的中线,是的中线,是的中线,若,则等于()A.16 B.14 C.12 D.109.已知,则下列不等式中正确的是()A. B. C. D.10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,有一块四边形草地,,.则该四边形草地的面积是___________.12.如图,某小区有一块长方形的花圃,有人为了避开拐角走捷径,在花圃内走出了一条路AB,已知AC=3m,BC=4m,他们仅仅少走了__________步(假设两步为1米),却伤害了花草.13.对于分式,当时,分式的值为零,则__________.14.如图,一张矩形纸片沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD等于_________.15.因式分解:=.16.在中,,,点在斜边所在的直线上,,线段关于对称的线段为,连接、,则的面积为_______.17.“直角三角形的两个锐角互余”的逆命题是______命题填“真”或“假”.18.如图:在中,,平分,平分外角,则__________.三、解答题(共66分)19.(10分)如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.20.(6分)某市举行知识大赛,校、校各派出名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数中位数众数校选手成绩校选手成绩80(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.21.(6分)(1)问题发现:如图1,和均为等边三角形,点在的延长线上,连接,求证:.(2)类比探究:如图2,和均为等腰直角三角形,,点在边的延长线上,连接.请判断:①的度数为_________.②线段之间的数量关系是_________.(3)问题解决:在(2)中,如果,求线段的长.22.(8分)在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点F.(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.23.(8分)一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.24.(8分)两个工程队共同参与一项筑路工程,若先由甲、乙两队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?25.(10分)在正方形ABCD中,点E是射线BC上的点,直线AF与直线AB关于直线AE对称,直线AF交射线CD于点F.(1)如图①,当点E是线段BC的中点时,求证:AF=AB+CF;(2)如图②,当∠BAE=30°时,求证:AF=2AB﹣2CF;(3)如图③,当∠BAE=60°时,(2)中的结论是否还成立?若不成立,请判断AF与AB、CF之间的数量关系,并加以证明.26.(10分)因式分解:
参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据三角形三边关系得出第三边的取值范围,然后从选项中选择范围内的数即可.【详解】∵三角形两边长分别为5cm和16cm,∴第三边的取值范围为,即,而四个选项中只有15cm在内,故选:B.【点睛】本题主要考查三角形三边关系,掌握三角形三边关系是解题的关键.2、D【分析】将点代入一次函数中,可得,随的增大而减小,可得,计算求解即可.【详解】∵一次函数的图象经过点,∴,解得:,∵随的增大而减小,∴<0,解得:<1,∴,故选:D.【点睛】本题考查了一次函数图象与系数的关系,明确:①k>0,y随x的增大而增大;当k<0时,y随x的增大而减小.3、D【分析】求出∠AOC,根据等腰得出三种情况,OD=PD,OP=OD,OP=CD,根据等腰三角形性质和三角形内角和定理求出即可.【详解】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当D在D1时,OD=PD,∵∠AOP=∠OPD=30°,∴∠ODP=180°﹣30°﹣30°=120°;②当D在D2点时,OP=OD,则∠OPD=∠ODP=(180°﹣30°)=75°;③当D在D3时,OP=DP,则∠ODP=∠AOP=30°;综上所述:120°或75°或30°,故选:D.【点睛】本题考查了等腰三角形,已知等腰三角形求其中一角的度数,灵活的根据等腰三角形的性质分类讨论确定点D的位置是求角度数的关键.4、D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.5、D【分析】完全平方公式是两数的平方和加减两数积的2倍,注意符合条件的a值有两个.【详解】解:∵x2-ax+16可以写成一个完全平方式,
∴,解得:.
故选:D.【点睛】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.6、C【解析】试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD≌△OBC,所以∠ADB=∠BCA,AD=BC,再由OA=OB,OC=OD,易得AC=-BD,又因AB=BA,利用SSS即可判定△ABD≌△BAC,同理可证△ACD≌△BDC,故答案选C.考点:全等三角形的判定及性质.7、C【分析】根据正五边形的性质和内角和为540°,得到△ABE≌△DCE,先求出∠BEA和∠CED的度数,再求∠BEC即可.【详解】解:根据正五边形的性质可得AB=AE=CD=DE,∠BAE=∠CDE=108°,∴△ABE≌△DCE,∴∠BEA=∠CED=(180°﹣108°)=36°,∴∠BEC=108°-36°-36°=36°,故选:C.【点睛】本题考查了正多边形的性质和内角和,全等三角形的判定,等腰三角形的性质,证明△ABE≌△DCE是解题关键.8、A【分析】根据三角形的中线将三角形分成面积相等的两个三角形即可解答.【详解】解:∵是的中线,,∴,又∵是的中线,∴,又∵是的中线,∴,故答案为:A.【点睛】本题考查了三角形的中线的性质,解题的关键是熟知三角形的中线将三角形分成面积相等的两个三角形.9、D【分析】根据不等式的性质解答即可.【详解】A.-2a<-2b,故该项错误;B.,故该项错误;C.2-a<2-b,故该项错误;D.正确,故选:D.【点睛】此题考查不等式的性质,熟记性质并熟练解题是关键.10、A【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.二、填空题(每小题3分,共24分)11、【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△CAD是直角三角形,分别求出△ABC和△CAD的面积,即可得出答案.【详解】连结AC,在△ABC中,∵∠B=90°,AB=4m,BC=3m,∴AC==5(m),S△ABC=×3×4=6(m2),在△ACD中,∵AD=13m,AC=5m,CD=12m,∴AD2=AC2+CD2,∴△ACD是直角三角形,∴S△ACD=×5×12=30(m2).∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36(m2)故答案为:.【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.12、1【分析】根据勾股定理求得AB的长,再进一步求得少走的步数即可.【详解】解:在Rt△ABC中,AB2=BC2+AC2,则AB=m,∴少走了2×(3+1−5)=1步,故答案为:1.【点睛】此题考查了勾股定理的应用,求出AB的长是解题关键.13、-1且.【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,
∴,且故答案为:-1且.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.14、126°【解析】展开如图:∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°﹣36°﹣18°=126°.故选C.15、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a后继续应用平方差公式分解即可:.16、4或8【分析】分类讨论①当点D在线段BC上,②当点D在线段BC上时,根据对称的性质结合等腰直角三角形的性质分别求得AC、DF=EF=CF的长,从而可求得答案.【详解】①当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAC=∠EAC,∴DF=EF,∠DFC=∠DFA=90,∵,∴,∵AB=AC,∠BAC=90,∴EF=DF=CF=,AB=AC=,∴AF=AC-CF=,DE=EF+DF=,∴;②当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAF=∠EAF,∴DF=EF,∠DFC=90,∵,∴,∵AB=AC,∠BAC=90,∴DF=EF=CF=,AB=AC=,∴AF=AC+CF=,DE=EF+DF=,∴;故答案为:或.【点睛】本题考查了对称的性质,等腰直角三角形的性质,利用等腰直角三角形的性质求得腰长是解题的关键.注意分类讨论.17、真【分析】根据给出的命题将其结论与条件互换即得到其逆命题,然后分析其真假即可.【详解】解:逆命题为:如果三角形有两个角互余,则三角形为直角三角形.因为符合三角形内角和定理,故是真命题.故答案为真【点睛】本题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题.18、【分析】先根据角平分线的定义可得到,,再根据三角形的外角性质得到,进而等量代换可推出,最后根据三角形的外角性质得到进而等量代换即得.【详解】∵平分∴∵平分外角∴∵的外角∴∵的外角∴∴∵∴故答案为:.【点睛】本题主要考查了外角性质及角平分线的定义,利用三角形的外角等于和它不相邻的内角之和转化角是解题关键.三、解答题(共66分)19、(1)见解析;(2)1.2;(3)【分析】(1)证明△ABP≌△BCQ即可得到结论;(2)证明Rt△ABN≌△Rt△C'BN求出DQ,设AN=NC'=a,则DN=2﹣a,利用勾股定理即可求出a;(3)过Q点作QG⊥BM于G,设MQ=BM=y,则MG=y﹣x,利用勾股定理求出MQ,再根据面积相减得到答案.【详解】解:(1)证明:∵∠ABC=90°∴∠BAP+∠APB=90°∵BQ⊥AP∴∠APB+∠QBC=90°,∴∠QBC=∠BAP,在△ABP于△BCQ中,,∴△ABP≌△BCQ(ASA),∴BP=CQ,(2)由翻折可知,AB=BC',连接BN,在Rt△ABN和Rt△C'BN中,AB=BC',BN=BN,∴Rt△ABN≌△Rt△C'BN(HL),∴AN=NC',∵BP=PC,AB=2,∴BP=2=CQ,CP=DQ=6,设AN=NC'=a,则DN=2﹣a,∴在Rt△NDQ中,(2﹣a)2+62=(a+2)2解得:a=1.2,即AN=1.2.(3)解:过Q点作QG⊥BM于G,由(1)知BP=CQ=BG=x,BM=MQ.设MQ=BM=y,则MG=y﹣x,∴在Rt△MQG中,y2=22+(y﹣x)2,∴.∴S△BMC′=S△BMQ﹣S△BC'Q=,=,=.【点睛】此题考查正方形的性质,三角形全等的判定及性质,勾股定理,正确理解题意画出图形辅助做题是解题的关键.20、(1)85,85,100;表格见解析;(2)A校成绩好些,理由见详解;(3)A校的方差为:70,B校的方差为:160,A校代表队选手成绩较为稳定.【分析】(1)根据平均数、众数、中位数的意义,结合成绩统计图加以计算,即可补全统计表.;
(2)根据平均数和中位数的统计意义分析,即可得到结论;
(3)分别求出A校、B校的方差即可.【详解】(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分),
B校的众数为:100(分),
填表如下:平均数/分中位数/分众数/分校选手成绩8585校选手成绩80100故答案为:85,85,100;
(2)A校成绩好些,理由如下:∵两个队的平均数都相同,A校的中位数高,
∴在平均数相同的情况下中位数高的A校成绩好些;
(3)∵A校的方差:S12=×[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,
B校的方差:S22=×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,
∴S12<S22,
∴A校代表队选手成绩较为稳定.【点睛】本题主要考查平均数,中位数,众数,方差,掌握均数,中位数,众数,方差的统计意义和计算方法,是解题的关键.21、(1)见解析;(2)①,②;(3)【分析】(1)根据等边三角形的性质得到AB=AC=BC,∠BAC=60°,AD=AE,∠DAE=60°,利用等量代换得∠BAD=∠CAE,则可根据“SAS”判断△ABD≌△ACE;(2)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠CAE,AD=AE,根据全等三角形的性质得到∠ACE=∠B=45°,BD=CE,等量代换即可得到结论;(3)先证明△CDE是直角三角形,再计算BC=2,从而可得CE=3,再运用勾股定理可得DE的长.【详解】(1)证明:和是等边三角形,且,即在和中(2)∵和均为等腰直角三角形,∴AB=AC,∠BAC=∠DAE,AD=AE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∴,∴∠ACE=∠B=45°,BD=CE,即BC+CD=CE,故答案为:①;②(3)由(2)知:又,,在中,,又,由(2)得在中,则线段的长是.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质.22、(1)见解析;(2)见解析;(3)【分析】(1)根据等边三角形的判定定理得到△ABC为等边三角形,得到AB=BC,∠ABC=∠C=60°,证明△ABD≌△BCE,根据全等三角形的性质证明结论;(2)过B作BH⊥AD,根据全等三角形的性质得到∠BAD=∠CBE,证明△AHB≌△BFC,根据全等三角形的性质解答;(3)过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,根据角平分线的性质得到CM=CN,证明△AFB≌△CMA,根据全等三角形的性质得到BF=AM,AF=CM,根据三角形的面积公式列式计算即可.【详解】(1)证明:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠1=∠2;(2)如图2,过B作BH⊥AD,垂足为H,∵△ABD≌△BCE,∴∠BAD=∠CBE,∵∠ABF+∠CBE=60°,∴∠BFD=∠ABF+∠BAD=60°,∴∠FBH=30°,∴BF=2FH,在△AHB和△BFC中,∴△AHB≌△BFC(AAS),∴BF=AH=AF+FH=2FH,∴AF=FH,∴BF=2AF;(3)如图3,过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,∵∠BFD=2∠CFD=90°,∴∠EFC=∠DFC=45°,∴CF是∠MFN的角平分线,∴CM=CN,∵∠BAC=∠BFD=90°,∴∠ABF=∠CAD,在△AFB和△CMA中,∴△AFB≌△CMA(AAS)∴BF=AM,AF=CM,∴AF=CN,∵∠FMC=90°,∠CFM=45°,∴△FMC为等腰直角三角形,∴FM=CM,∴BF=AM=AF+FM=2CM,∵∴S△BDF=2S△CDF,∵AF=CM,FM=CM,∴AF=FM,∴F是AM的中点,∴,∵AF⊥BF,CN⊥BF,AF=CN,∴S△AFB=S△BFC,设S△CDF=x,则S△BDF=2x,∴S△AFB=S△BFC=3x∴,则3x+3x+x=2,解得,x=,即S△CDF=.【点睛】本题考查了全等三角形的判定和性质、三角形的面积计算,掌握全等三角形的判定定理和性质定理是解题的关键.23、(1)20天;(2)方案一合算【分析】(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需天,总工程量为a,由此可求出甲、乙两队的施工效率,然后根据“甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成”列出关于x的分式方程,解之经检验后即可得出结论;(2)利用“总费用=单天费用×工作时间”分别求出方案一、二所需费用,比较后即可得出结论.【详解】(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需天,总工程量为a因此,甲队的施工效率为,乙队的施工效率为由题意得:整理得:解得:经检验,是原分式方程的解,且符合题意答:规定工期为20天;(2)方案一所需费用为(万元)方案二所需费用为(万元)因故选择方案一合算.【点睛】本题考查了分式方程的实际应用,依据题意,正确列出分式方程是解题关键.24、(1)乙队单独完成这项工程需90天;(2)甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)乙队最少施工30天【分析】(1)设乙队单独完成这项工程需x天,根据“甲、乙合作30天的工作量+乙队15天的工作量=1”列分式方程即可;(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元,根据题意列二元一次方程组即可求出a、b的值;(3)先求出甲的效率,设乙队施工y天,则甲队还需施工天完成任务,然后根据“总费用不超过万元”列出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度河北省护师类之妇产护理主管护师题库附答案(典型题)
- 2025江苏连云港市灌云县招聘乡村振兴专干40人笔试备考题库及完整答案详解一套
- 2025江苏扬州现代农业生态环境投资发展集团招聘笔试备考题库完整参考答案详解
- 2024年河北邯郸丛台区公开招聘教师200名笔试备考题库及参考答案详解一套
- 河北省邢台市卓越联盟2024-2025学年高一下学期第三次考试地理试题(含答案)
- 2025年河北省沧州市中考历史三模试卷(含答案)
- 2019-2025年初级经济师之初级建筑与房地产经济高分通关题库A4可打印版
- 德克士 创新服务满足需求
- 插花基本知识培训 初学者基础插花技巧
- 温暖的春节故事幼儿乐园
- TYNZYC 0104-2023 云南省中药材追溯体系 第4部分:追溯码编码规范
- 广东省广州市天河区华南师大附中2024届语文八年级第二学期期末监测试题含解析
- 跨学科知识图谱构建与应用
- 玉米套种红薯技术方案
- 南开大学商学院管理综合历年考研真题汇编(含部分答案)(1)合集
- 非财务人员看报表课件
- 读书分享读书交流会《人生海海》
- 楼梯踏步玻璃槽的施工方案
- 11测量放线复核记录报表(全自动计算-只需要输入坐标)
- 学校食堂食材配送服务方案(肉类、粮油米面、蔬菜水果类)
- 木偶奇遇记 阅读单
评论
0/150
提交评论