山东省枣庄市2019-2020学年高二数学下学期期末考试试题含解析_第1页
山东省枣庄市2019-2020学年高二数学下学期期末考试试题含解析_第2页
山东省枣庄市2019-2020学年高二数学下学期期末考试试题含解析_第3页
山东省枣庄市2019-2020学年高二数学下学期期末考试试题含解析_第4页
山东省枣庄市2019-2020学年高二数学下学期期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE19-山东省枣庄市2024-2025学年高二数学下学期期末考试试题(含解析)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=},B={y|y=2x},则A∩B=()A.(1,+∞) B.[1,+∞) C.(0,+∞) D.(0,1]【答案】B【解析】【分析】利用幂函数的定义域和指数函数的值域化简集合A和B,再利用交集的定义求解即可.【详解】集合A={x|y=}=,B={y|y=2x},则A∩B=[1,+∞)故选:B【点睛】本题考查集合的交并补运算,考查指数函数和幂函数的性质,考查学生计算实力,属于基础题.2.命题“”的否定是()A. B.C. D.【答案】C【解析】【分析】依据全称命题的否定是特称命题,写出即可.【详解】命题“”的否定是“”.故选:C.【点睛】本题考查了全称命题与特称命题的否定关系,是基础题.3.已知函数,且a≠1)的图象过定点(m,n),则()A. B. C. D.【答案】D【解析】【分析】依据指数函数的图象与性质,求出的图象所过定点,再计算的值.【详解】解:函数,且中,令,得,所以,所以的图象过定点,所以,;所以.故选:.【点睛】本题考查了指数函数与指数运算问题,属于基础题.4.若复数z满意2z+=3+2i2024(i为虚数单位),则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【答案】A【解析】【分析】设,表示出,再依据复数的乘方求出,再依据复数相等得到方程组,解得即可;【详解】解:设,则所以因为所以又,所以,所以,所以故选:A【点睛】本题考查复数的运算以及复数相等的应用,属于基础题.5.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,遗忘了密码的最终一位数字,假如他记得密码的最终一位是偶数,则他不超过2次就按对的概率是()A. B. C. D.【答案】C【解析】【分析】随意按最终一位数字,不超过2次就按对有两种情形一种是按1次就按对和第一次没有按对,其次次按对,求两种情形的概率和即可;【详解】密码的最终一个数是偶数,可以为按一次就按对的概率:,第一次没有按对,其次次按对的概率:则不超过两次就按对概率:,故选:C.【点睛】本题考查概率的求法,考查相互独立事务概率乘法公式和互斥事务概率加法公式的运用,是基础题.6.若绽开式的常数项等于,则()A. B. C.2 D.3【答案】C【解析】【分析】先求出绽开式中的系数,再乘以得绽开式的常数项,解方程即可求解得答案.【详解】解:绽开式的通项公式为:,所以当时,项的系数为:,的绽开式无常数项,所以绽开式的常数项为:,解得:故选:C.【点睛】本题考查二项式的常数项的求解,是中档题.7.已知点在幂函数y=f(x)的图象上,设,,c=f(0.30.5),则a,b,c的大小关系是(A.b<c<a B.c<b<a C.a<c<b D.a<b<c【答案】D【解析】【分析】由幂函数所过的点可得幂函数的解析式,从而得出幂函数的单调性,又比较指数式,对数式的大小关系,可得选项.【详解】设幂函数y=f(x)为,因为点在幂函数y=f(x)的图象上,所以,解得,所以,且函数在上单调递减,又,,,且0.,所以,所以a<b<c,故选:D.【点睛】本题考查指数式,对数式比较大小,并且依据函数的单调性比较函数值的大小关系,属于中档题.8.如图是一块高尔顿板示意图:在一块木板.上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,小球从上方的通道口落下后,将与层层小木块碰撞,最终掉入下方的某一个球槽内.若小球下落过程中向左、向右落下的机会均等,则小球最终落入④号球槽的的概率为()A. B. C. D.【答案】D【解析】【分析】小球落下要经过5次碰撞,每次向左、向右落下的概率均为,并且相互独立,最终落入④号球槽要经过两次向左,三次向右,依据独立重复事务发生的概率公式,即可求解.【详解】解:设这个球落入④号球槽为时间,落入④号球槽要经过两次向左,三次向右,所以.故选:D.【点睛】本题主要考查独立重复试验,属于基础题.二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列说法正确的是A在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合效果越好B.回来直线至少经过点,,,,,,中的一个C.若,,则D.设随机变量,若,则【答案】ACD【解析】【分析】依据残差图中残差点的分布状况与模型的拟合效果可推断选项,线性回来直线肯定经过样本中心点,线性回来直线不肯定经过样本数据中的一个点,推断选项,依据公式计算出结果,推断选项,依据正态分布的性质,推断选项.【详解】解:对于,在残差图中,残差点比较匀称的分布在水平带状区域中,带状区域越窄,说明模型的拟合效果越好,选项正确;对于,线性回来直线不肯定经过样本数据中的一个点,它是最能体现这组数据的改变趋势的直线,选项错误;对于,,选项正确;对于,随机变量,若,则,选项正确;综上可得,正确的选项为,,故选:.【点睛】本题考查命题的真假推断,考查线性回来直线以及正态分布,考查学生的逻辑推理实力以及分析解决问题的实力,属于中档题.10.已知符号函数,则()A.B.C.是奇函数D.函数的值域为(﹣∞,1)【答案】BC【解析】【分析】对于A,推断出log23•log3<0,依据函数解析式可得函数值;对于B,=﹣2<0,依据函数解析式可得函数值;对于C,探讨当x>0,x<0和x=0时的函数值,利用奇函数的定义推断即可;对于D,写出函数解析式画出图象可得函数的值域.【详解】依据题意,依次分析选项:对于A,log23>0而log3<0,则log23•log3<0,故sgn(log23•log3)=﹣1,A错误;对于B,=﹣2<0,则sgn()=﹣1,B正确;对于C,sgn(x)=,当x>0时,sgn(﹣x)=﹣sgn(x)=﹣1,当x<0时,sgn(﹣x)=﹣sgn(x)=1,当x=0时,sgn(﹣x)=﹣sgn(x)=0,则对于随意的x,都有sgn(﹣x)=﹣sgn(x),故sgn(x)是奇函数,C正确;对于D,函数y=2x•sgn(﹣x)=,其图象大致如图,值域不是(﹣∞,1),D错误;故选:BC.【点睛】本题考查分段函数的性质,涉及函数值的计算以及函数奇偶性的推断,属于基础题.11.下面结论正确的是()A.若3个班分别从5个风景点中选择一处巡游,则不同的选法种数为35B.1×1!+2×2!+…+nn!=(n+1)!﹣1(n∈N*)C.(n+1)=(m+1)(n>m,)D.()【答案】BCD【解析】【分析】.利用乘法原理即可得出;.利用,分别相加求和即可得出;.利用组合数计算公式即可得出;.由二项式定理可得:的绽开式的奇数项与偶数项的二项式系数相等,即可推断出结论.【详解】.若3个班分别从5个风景点中选择一处巡游,则不同的选法种数为,因此不正确;.,!!,因此正确;.,,,,因此正确;.由二项式定理可得:的绽开式的奇数项与偶数项的二项式系数相等,可得:,因此正确.故选:BCD.【点睛】本题主要考查了二项式定理的绽开式及其性质、排列组合计算公式,考查了推理实力与计算实力,意在考查学生对这些学问的理解驾驭水平.12.设函数,则()A.的定义域为B.若,的微小值点为1C.若,则在上单调递增D.若,则方程无实根【答案】ABD【解析】【分析】依据对数函数的性质以及分母不为0求出函数的定义域,分别代入,,求出函数的导数,求出函数的单调区间,推断即可,结合,的结论推断即可.【详解】由题意得,解得:且,故函数的定义域是,,,故正确;当时,,,令,则,在定义域递增,而(1),故,,时,,即,递减,时,,即,递增,故时,的微小值点是1,故正确;时,,,令,,递增,而(1),(e),故存在,使得,即,故在递减,在,递增,故错误;由得:的微小值即的最小值为(1),由得:的最小值是,综合,,时,的最小值是1,时,的最小值大于1,故若,则方程无实根,故正确;故选:ABD.【点睛】本题主要考查函数的单调性、极值、最值和零点问题,意在考查学生对这些学问的理解驾驭水平和分析推理实力.三、填空题:本题共4小题,每小题5分,共20分.13.已知条件,,若是的必要条件,则实数的取值范围是_____.【答案】【解析】【分析】分别设条件对应的集合为,依据题意得,再依据集合关系求解即可.【详解】解:条件对应集合为,因为是的必要条件,所以,所以依据集合关系得:故答案为:.【点睛】本题考查必要条件的集合关系,是基础题.14.已知,则的最小值是_____.【答案】8【解析】【分析】利用基本不等式中“1”【详解】因为,所以,当且仅当时,即时取等号.故答案为:.【点睛】本题主要考查基本不等式的应用,属于基础题.15.若定义在R上的奇函数f(x)在(0,+∞)上单调递增,且f(1)=0,则的解集为_____.【答案】【解析】【分析】依据题意,由奇函数的性质分析可得以及在上单调递增,且,又由或或,解可得的取值范围,即可得答案.【详解】依据题意,为定义在上的奇函数,则,所以当时,满意;又由函数在上单调递增,且,则函数在上单调递增,且,所以或或,解可得:或或或,即的解集为;故答案为:.【点睛】本题考查了函数的奇偶性和单调性的应用,属于基础题.16.科学探讨表明,宇宙射线在大气中能够产生放射性碳14.动植物在生长过程中衰变的碳14,可以通过与大气的相互作用得到补充,所以活着的动植物组织中的碳14含量保持不变.死亡后的动植物,停止了与外界环境的相互作用,机体中原有的碳14就按其确定的规律衰变.碳14的衰变极有规律,其精确性可以称为自然界的“标准时钟”.碳14的残余量占原始含量的比值P与生物体死亡年数t满意P=at(a为正常数).已知碳14的“半衰期”是5730年,即碳14大约每经过5730年就衰变为原来的一半.则a=_____;2020年1月10日,中国社会科学院考古探讨所发布了“2024年中国考古新发觉”六大考古项目,位于滕州市官桥镇大韩村东的“大韩墓地”胜利入选.考古人员发觉墓地中某一尸体内碳14的残余量占原始含量的73%,则“大韩墓地”距测算之时约_____年.(参考数据:lg73≈1.86,lg2【答案】(1).(2).2674【解析】【分析】(1)依据每经过5730年衰减为原来的一半,可得生物体内碳14的含量与死亡年数之间的函数关系式,进而解出即可;(2)利用碳14的残余量约占原始含量的,代入计算即可.【详解】解:依据题意令,,则有,解得;令,将代入得,即,则,解得,故答案为:;2674.【点睛】本题考查利用数学学问解决实际问题,考查学生的计算实力,属于中档题.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.某中学高二甲、乙两个爱好班进行了一次数学对抗赛,该对抗赛试题满分为150分,规定:成果不小于135分为“优秀”,成果小于135分为“非优秀”,对这两个班的全部学生的数学成果统计后,得到如图条形图.(1)依据图中数据,完成如下的2×2列联表;甲班乙班总计优秀非优秀总计(2)计算随机变量的值(精确到0.001),并由此推断:能否有90%的把握认为“成果与班级有关”?参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828参考公式:,其中【答案】(1)答案见解析;(2),没有90%的把握认为“成果与班级有关”.【解析】【分析】(1)依据条形图中数据完成表格即可;(2)依据公式计算出的值,然后可得答案.【详解】(1)依据条形图中的数据可得如下表格,甲班乙班总计优秀152035非优秀403070总计5550105(2)因为,所以没有90%的把握认为“成果与班级有关”.【点睛】本题考查的是独立性检验,考查了学生的计算实力,属于基础题.18.已知是定义在上的偶函数,且当时,.(1)求的解析式;(2)若,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)依据函数的偶函数性质求解解析式即可;(2)依据偶函数性质和函数的单调性解不等式即可.【详解】解:(1)设,则,∴,∵是定义在上的偶函数,∴.∴的解析式为:;(2)∵函数的对称轴为,开口向上,∴当时,在区间单调递增,又∵是定义在上的偶函数,∴,∵,∴,解得:,故实数取值范围为.【点睛】本题考查利用函数的奇偶性求函数解析式,利用函数单调性与奇偶性解不等式,是中档题.19.已知函数f(x)=ax2﹣(4a+1)x+4(a∈R)(1)若关于x的不等式f(x)≥b的解集为{x|1≤x≤2},求实数a,b的值;(2)解关于x的不等式f(x)>0.【答案】(1)-1,6;(2)答案见详解【解析】【分析】(1)由f(x)≥b的解集为{x|1≤x≤2}结合韦达定理即可求解参数a,b的值;(2)原式可因式分解为,再分类探讨即可,对再细分为即可求解.【详解】(1)由f(x)≥b得,因为f(x)≥b的解集为{x|1≤x≤2},故满意,,解得;(2)原式因式分解可得,当时,,解得;当时,的解集为;当时,,①若,即,则的解集为;②若,即时,解得;③若,即时,解得.【点睛】本题考查由一元二次不等式的解求解参数,分类探讨求解一元二次不等式,属于中档题.20.1933年7月11日,中华苏维埃共和国临时中心政府依据中心革命军事委员会6月30日的建议,确定8月1日为中国工农红军成立纪念日.中华人民共和国成立后,将此纪念日改称为中国人民解放军建军节.为庆祝建军节,某校实行“强国强军”学问竞赛,该校某班经过层层筛选,还有最终一个参赛名额要在A,B两名学生中间产生,该班委设计了一个测试方案:A,B两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A能正确回答其中的(1)求A恰好答对两个问题的概率;(2)求B恰好答对两个问题的概率;(3)设A答对题数为X,B答对题数为Y,若让你投票确定参赛选手,你会选择哪名学生?请说明理由.【答案】(1);(2);(3)选择A.【解析】【分析】(1)由组合学问和古典概率公式可得出A恰好答对两个问题的概率;(2)由3次独立重复试验中事务发生2次的概率公式可得出B恰好答对两个问题的概率;(3)X全部可能的取值为1,2,3.利用古典概率公式分别求出X取每一个值的概率,得出X的分布列,从而求得X的期望和方差,再由,求得Y的期望和方差,比较可得结论.【详解】(1)A恰好答对两个问题的概率为;(2)B恰好答对两个问题的概率为;(3)X全部可能的取值为1,2,3.,,,所以,;而,,,所以,,可见,A与B的平均水平相当,但A比B的成果更稳定.所以选择投票给学生A【点睛】本题考查古典概率公式的应用,独立重复试验发生的概率公式,以及离散型随机变量的分布列,二项分布,期望和方差的实际运用,属于中档题.21.已知函数.(1)若∀x∈R,f(x)≥0,求实数a的取值范围;(2)用min{m,n}表示m,n中的较小者.设h(x)=min{f(x),g(x)}(x>0),若h(x)有三个零点,求实数a的取值范围.【答案】(1),(2).【解析】【分析】(1)利用判别式解得结果可得答案;(2)当时,在上无零点;所以在上有三个零点,再转化为是的一个零点,且在上有两个零点,再依

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论