




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.的立方根是()A.±2 B.±4 C.4 D.22.在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个 B.7个 C.6个 D.5个3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形4.如图,在边长为的等边三角形中,点分别是边的中点,于点,连结,则的长为()A. B. C. D.5.下列计算结果为a8的是()A.a2•a4 B.a16÷a2 C.a3+a5 D.(﹣a2)46.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为()A.75° B.105° C.135° D.165°7.如图,在中,点为的中点,为的外角平分线,且,若,则的长为()A.3 B. C.5 D.8.若4x2+m+9y2是一个完全平方式,那么m的值是()A.6xy B.±12xy C.36xy D.±36xy9.下列命题中,是真命题的是()A.同位角相等B.全等的两个三角形一定是轴对称C.不相等的角不是内错角D.同旁内角互补,两直线平行10.已知点P−1−2a,5关于x轴的对称点和点Q3,b关于y轴的对称点相同,则点Aa,bA.1,−5 B.1,5 C.−1,5 D.−1,−5二、填空题(每小题3分,共24分)11.一组数据:3、5、8、x、6,若这组数据的极差为6,则x的值为__________.12.如图,已知中,,,边AB的中垂线交BC于点D,若BD=4,则CD的长为_______.13.市运会举行射击比赛,射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10次成绩(单位:环)的平均数及方差如下表.根据表中提供的信息,你认为最合适的人选是_____,理由是_________.甲乙丙丁平均数8.38.18.08.2方差2.11.81.61.414.在RtΔABC中,AB=3cm,BC=4cm,则AC边的长为_____.15.如图,在中,是的垂直平分线,且分别交于点和,,则等于_______度.16.分式的最简公分母是_______.17.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=)若设这种童鞋原来每双进价是x元,根据题意,可列方程为_________________________________________.18.的平方根是_________.三、解答题(共66分)19.(10分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答下列问题:(1)本次调查中,一共调查了名同学;(2)将条形统计图补充完整;(3)在扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据调查结果,估计学校购买科普类读物多少册比较合理?20.(6分)如图,中,,,.(1)用直尺和圆规在边上找一点,使到的距离等于.(2)是的________线.(3)计算(1)中线段的长.21.(6分)先化简,再求值:,其中满足22.(8分)如图,在中,,,,平分交于,求的度数.23.(8分)在平面直角坐标系中,点P(2﹣m,3m+6).(1)若点P与x轴的距离为9,求m的值;(2)若点P在过点A(2,﹣3)且与y轴平行的直线上,求点P的坐标.24.(8分)从2019年9月1日起,我市积极开展垃圾分类活动,市环卫局准备购买、两种型号的垃圾箱,通过市场调研得知:购买3个型垃圾箱和2个型垃圾箱共需540元;购买2个型垃圾箱比购买3个型垃圾箱少用160元.(1)求每个型垃圾箱和型垃圾箱各多少元?(2)该市现需要购买、两种型号的垃圾箱共30个,设购买型垃圾箱个,购买型垃圾箱和型垃圾箱的总费用为元,求与的函数表达式,如果买型垃圾箱是型垃圾箱的2倍,求出购买型垃圾箱和型垃圾箱的总费用.25.(10分)已知是等边三角形,点是直线上一点,以为一边在的右侧作等边.(1)如图①,点在线段上移动时,直接写出和的大小关系;(2)如图②,点在线段的延长线上移动时,猜想的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.26.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(0,-3),B(3,-2),C(2,-4).(1)在图中作出△ABC关于x轴对称的△A1B1C1.(2)点C1的坐标为:.(3)△ABC的周长为.
参考答案一、选择题(每小题3分,共30分)1、D【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.2、B【分析】先以三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B为圆心,BC长为半径画弧,交AB于点D,则BCD就是等腰三角形;②如图2,以A为圆心,AC长为半径画弧,交AB于点E,则ACE就是等腰三角形;③如图3,以C为圆心,BC长为半径画弧,交AB于M,交AC于点F,则BCM、BCF是等腰三角形;④如图4,作AC的垂直平分线交AB于点H,则ACH就是等腰三角形;⑤如图5,作AB的垂直平分线交AC于点G,则AGB就是等腰三角形;⑥如图6,作BC的垂直平分线交AB于I,则BCI就是等腰三角形.故选:B.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.3、C【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C【点睛】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.4、C【分析】根据题意,先由三角形的中位线求得DE的长,再由含有角的直角三角形求出FD的长,最后由勾股定理求得EF的长即可得解.【详解】∵是等边三角形且边长为4∴,∵∴∴∵点分别是边的中点∴,∵∴∵在中,∴,故选:C.【点睛】本题主要考查了等边三角形的性质,三角形中位线,含有角的直角三角,勾股定理等相关内容,熟练掌握三角形的相关知识点是解决本题的关键.5、D【分析】分别根据同底数幂的乘法法则,同底数幂的除法法则,合并同类项法则以及幂的乘方与积的乘方运算法则逐一判断即可.【详解】解:A选项a2•a4=a6,故本选项不符合题意;B选项a16÷a2=a14,故本选项不符合题意;C选项a3与a5不是同类项,所以不能合并,故本选项不符合题意;D选项(﹣a2)4=a8,正确.故选:D.【点睛】本题考查同底数幂的乘法法则,同底数幂的除法法则,合并同类项法则以及幂的乘方与积的乘方运算法则,解题关键是区分同底数的幂的乘法法则与幂的乘方法则,同底数的幂的乘法法则为底数不变指数相加,幂的乘方法则为底数不变指数相乘.6、D【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可.【详解】由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选D.【点睛】本题考查三角形的外角性质,解题的关键是掌握三角形的外角性质.7、D【分析】延长BD交CA的延长线于E,根据等腰三角形三线合一的性质可得BD=DE,AB=AE,再求出CE,然后判断出DM是△BCE的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【详解】如图,延长BD,CA交于E,为的外角平分线,在△ADE和△ADB中,
∴△ADE≌△ADB(ASA).∴DE=DB,AE=AB.∴DM=EC=
(AE+AC)=
(AB+AC)=.【点睛】本题考查等腰三角形性质,解题的关键是熟悉三角形的中位线平行于第三边并且等于第三边的一半.8、B【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵4x2+m+9y2=(2x)2+m+(3y)2是一个完全平方式,∴m=±12xy,故选:B.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的特点是解本题的关键.9、D【分析】根据平行线的性质对A进行判断;根据轴对称的定义对B进行判断;根据内错角的定义对C进行判断;根据平行线的判定对D进行判断.【详解】解:A、两直线平行,同位角相等,所以A选项为假命题;B、全等的两个三角形不一定是轴对称的,所以B选项为假命题;C、不相等的角可能为内错角,所以C选项为假命题;D、同旁内角互补,两直线平行,所以D选项为真命题.故选D.考点:命题与定理.10、B【解析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y)∴P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b),因而就得到关于a,b的方程,从而得到a,b的值.则A(a,b)关于x轴对称的点的坐标就可以得到.【详解】∵P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b);∴-1-2a=-3,b=-5;∴a=1,∴点A的坐标是(1,-5);∴A关于x轴对称的点的坐标为(1,5).故选B.【点睛】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.二、填空题(每小题3分,共24分)11、2或1【解析】根据极差的定义先分两种情况进行讨论,当x最大时或最小时分别进行求解即可.【详解】∵数据3、5、8、x、6的极差是6,∴当x最大时:x﹣3=6,解得:x=1;当x最小时,8﹣x=6,解得:x=2,∴x的值为2或1.故答案为:2或1.【点睛】本题考查了极差,掌握极差的定义是解题的关键;求极差的方法是用一组数据中的最大值减去最小值.12、【分析】连接AD,根据中垂线的性质可得AD=4,进而得到,,最后根据勾股定理即可求解.【详解】解:连接AD∵边AB的中垂线交BC于点D,BD=4∴AD=4∵,∴∴∴故答案为:.【点睛】此题主要考查中垂线的性质、角所对的直角边等于斜边的一半、勾股定理,熟练掌握性质是解题关键.13、丁;综合平均数和方差两个方面说明丁成绩既高又稳定【分析】根据甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,得到丁是最佳人选.【详解】∵甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,∴综合平均数和方差两个方面说明丁成绩既高又稳定,∴丁是最佳人选.故答案为:丁.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、5cm或cm【分析】分两种情况考虑:BC为斜边,BC为直角边,利用勾股定理求出AC的长即可.【详解】若BC为直角边,
∵AB=3cm,BC=4cm,
∴AC=(cm),若BC为斜边,
∵AB=3cm,BC=4cm,
∴AC=(cm),综上所述,AC的长为cm或cm.故答案为:cm或cm.【点睛】本题考查了勾股定理的应用,在解答此题时要注意进行分类讨论,不要漏解.15、20【分析】先根据三角形的内角和求出∠ABC的度数,再根据是的垂直平分线得出AE=BE,从而得出∠ABE=∠A=50°,再计算∠EBC即可.【详解】∵,∴∠ABC=180°-∠A-∠C=70°,∵是的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∴∠EBC=70°-50°=20°.故答案为20.【点睛】本题考查三角形的内角和定理和线段垂直平分线的性质,根据是的垂直平分线得出AE=BE是解题的关键.16、【分析】根据题意,把分母进行通分,即可得到最简公分母.【详解】解:分式经过通分,得到;∴最简公分母是;故答案为:.【点睛】本题考查了最简公分母的定义,解题的关键是掌握公分母的定义,正确的进行通分.17、【分析】由等量关系为利润=售价-进价,利润率=%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【详解】解:根据题意,得;故答案为:.【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.18、【分析】先根据算术平方根的定义得到,然后根据平方根的定义求出8的平方根.【详解】解:,的平方根为,故答案为.【点睛】本题考查了平方根的定义:若一个数的平方等于,那么这个数叫的平方根,记作.三、解答题(共66分)19、(1)200;(2)见解析;(3)72;(4)2100【分析】(1)根据文学的人数以及百分比求出总人数即可;(2)求出艺术,科普的人数,画出条形图即可;(3)利用圆心角=360°×百分比计算即可;(4)利用样本估计总体的思想解决问题即可.【详解】解:(1)总人数=60÷30%=200(名),故答案为:200;(2)科普的人数=200×35%=70(名),艺术的人数=200﹣60﹣70﹣30=40(名),补全条形统计图如图所示:(3)艺术的圆心角=360°×=72°,故答案为:72;(4)6000×35%=2100(册),答:估计学校购买科普类读物2100册比较合理.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,弄清题意是解题的关键.20、(1)画图见解析;(2)平分;(1)1.【分析】(1)作∠A的角平分线,以点A为圆心,任意半径画弧,再分别以交点为圆心,大于交点线段长度一半为半径画弧,将交点和点A连接,与BC的交点为点D,根据角平分线的性质即可得到,到的距离等于;(2)根据(1)可得,是平分线;(1)设,作于,则,因为直角三角形DEB,勾股定理列出方程即可求出答案.【详解】解:(1)利用角平分线的性质可得,角平分线的点到角两边距离相等,即作的角平分线,与的交点即为点.如图:(2)由(1)可得是的平分线.故填平分;(1)设,作于,则,,,,,,,,,即的长为.【点睛】本题主要考查了尺规作图,熟练角平分线的画法和性质以及勾股定理是解决本题的关键.21、原式【解析】先求出x、y的值,再把原式化简,最后代入求出即可.【详解】试题解析:原式,∵,∴,原式.22、15°【分析】首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠1.【详解】解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,
∴∠3=20°,
∵∠2=∠3,
∴∠2=10°,
∴∠ABC=180°-100°-10°=70°,
∵BE平分∠BAC,
∴∠ABE=35°,
∵∠1=∠2+∠ABE,
∴∠1=15°.【点睛】本题考查了角平分线定义、三角形内角和定理和三角形外角性质,能求出∠ABE的度数是解此题的关键.23、(1)1或﹣1;(2)(2,6)【分析】(1)由点P与x轴的距离为9可得,解出m的值即可;(2)由点P在过点A(2,-3)且与y轴平行的直线上可得2-m=2,解出m的值即可.【详解】(1)点P(2-m,3m+6),点P在x轴的距离为9,|3m+6|=9,解得:m=1或-1.答:m的值为1或-1;(2)点P在过点A(2,-3)且与y轴平行的直线上,2-m=2,解得:m=0,3m+6=6,点P的坐标为(2,6).【点睛】本题主要考查点到坐标轴的距离以及在与坐标轴平行的直线上点的坐标的特点,熟练掌握点到坐标轴的距离的意义以及与坐标轴平行的直线上点的坐标的特点是解题关键.24、(1)每个型垃圾箱100元,每个型垃圾箱120元;(2)与的函数表达式为:(且a为整数),若型垃圾箱是型垃圾箱的2倍,总费用为3200元.【分析】(1)设每个型垃圾箱x元,每个型垃圾箱y元,根据“购买3个型垃圾箱和2个型垃圾箱共需540元;购买2个型垃圾箱比购买3个型垃圾箱少用160元”列出方程组解答即可;(2)根据(1)中的单价可列出与的函数表达式,由型垃圾箱是型垃圾箱的2倍得出a的值,代入函数表达式计算即可.【详解】解:(1)设每个型垃圾箱x元,每个型垃
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44919-2024微机电系统(MEMS)技术薄膜力学性能的鼓胀试验方法
- 2025年新高考2卷(新课标Ⅱ卷)英语试卷
- 42我的职场我做主沈琳30课件
- 考研复习-风景园林基础考研试题【研优卷】附答案详解
- 《风景园林招投标与概预算》试题A附参考答案详解【满分必刷】
- 2025-2026年高校教师资格证之《高等教育法规》通关题库带答案详解(新)
- 2024年湖南现代物流职业技术学院单招职业技能测试题库可打印
- 基于深度学习的物体6D姿态估计算法研究
- 2025年Z世代消费趋势下的新消费品牌品牌价值评估报告
- 历史(广东省卷)2025年中考考前押题最后一卷
- 摩根斯丹利-2025中国汽车综述 China Autos Overview -2025-05
- 2025年(第一季度)电网工程设备材料信息参考价(加密)
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 人教版高一下学期期末考试数学试卷与答案解析(共五套)
- 暖通工程施工安装技术要求
- T∕ACSC 01-2022 辅助生殖医学中心建设标准(高清最新版)
- 回油管夹片的冲压工艺与模具设计
- 公制螺纹量规尺寸标准对照表
- 个体化健康教育
- Resume(简历英文版)
- 报价单模板(中英文
评论
0/150
提交评论