陕西省西安高新逸翠园校2024届中考数学押题卷含解析_第1页
陕西省西安高新逸翠园校2024届中考数学押题卷含解析_第2页
陕西省西安高新逸翠园校2024届中考数学押题卷含解析_第3页
陕西省西安高新逸翠园校2024届中考数学押题卷含解析_第4页
陕西省西安高新逸翠园校2024届中考数学押题卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安高新逸翠园校2024届中考数学押题卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.的相反数是()A. B.- C. D.-2.两个有理数的和为零,则这两个数一定是()A.都是零 B.至少有一个是零C.一个是正数,一个是负数 D.互为相反数3.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y34.下列实数中,有理数是()A. B. C.π D.5.将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×1086.估计介于()A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间7.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x…–2–1012…y…04664…从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的8.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()A.50° B.40° C.30° D.20°9.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有()A.1个 B.3个 C.4个 D.5个10.已知,则的值为A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示,数轴上点A所表示的数为a,则a的值是____.12.抛物线y=2x2+4向左平移2个单位长度,得到新抛物线的表达式为_____.13.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段OC-A.B.C.D.14.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.15.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正确的序号是(把你认为正确的都填上).16.如图,正比例函数y=kx(k>0)与反比例函数y=6x三、解答题(共8题,共72分)17.(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.18.(8分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.19.(8分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.20.(8分)如图,菱形中,分别是边的中点.求证:.21.(8分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?22.(10分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?23.(12分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.24.如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.(1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);①;②;③;④;⑤;⑥;(2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果与相似,但面积不相等,求此时正方形的边长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】∵+(﹣)=0,∴的相反数是﹣.故选B.2、D【解析】解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.3、A【解析】

作出反比例函数的图象(如图),即可作出判断:∵-3<1,∴反比例函数的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.∴当x1<x2<1<x3时,y3<y1<y2.故选A.4、B【解析】

实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,等,很容易选择.【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,

B、无限循环小数为有理数,符合;

C、为无理数,故本选项错误;

D、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有、根式下开不尽的从而得到了答案.5、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.【详解】5570000=5.57×101所以B正确6、C【解析】

解:∵,∴,即∴估计在2~3之间故选C.【点睛】本题考查估计无理数的大小.7、C【解析】当x=-2时,y=0,

∴抛物线过(-2,0),

∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;

当x=0时,y=6,

∴抛物线与y轴的交点坐标为(0,6),故B正确;

当x=0和x=1时,y=6,

∴对称轴为x=,故C错误;

当x<时,y随x的增大而增大,

∴抛物线在对称轴左侧部分是上升的,故D正确;

故选C.8、B【解析】试题解析:延长ED交BC于F,∵AB∥DE,∴在△CDF中,故故选B.9、D【解析】

根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;令x=3,y>0,∴9a+3b+c>0,故②正确;∵OA=OC<1,∴c>﹣1,故③正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.故选D.【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.10、C【解析】由题意得,4−x⩾0,x−4⩾0,解得x=4,则y=3,则=,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】

根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.【详解】∵直角三角形的两直角边为1,2,∴斜边长为,那么a的值是:﹣.故答案为.【点睛】此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.12、y=2(x+2)2+1【解析】试题解析:∵二次函数解析式为y=2x2+1,∴顶点坐标(0,1)向左平移2个单位得到的点是(-2,1),可设新函数的解析式为y=2(x-h)2+k,代入顶点坐标得y=2(x+2)2+1,故答案为y=2(x+2)2+1.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13、C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO上运动时,∠APB逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.14、【解析】

如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC,∴CF⊥AB(垂径定理的推论);∵BD是⊙O的直径,∴AD⊥AB;设⊙O的半径为r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案为.【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.15、①②④【解析】分析:∵四边形ABCD是正方形,∴AB=AD。∵△AEF是等边三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③说法错误。∵EF=2,∴CE=CF=。设正方形的边长为a,在Rt△ADF中,,解得,∴。∴。∴④说法正确。综上所述,正确的序号是①②④。16、1.【解析】

根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【详解】∵双曲线y=6x∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案为1.三、解答题(共8题,共72分)17、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】

(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.18、2.【解析】

将原式化简整理,整体代入即可解题.【详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.19、∠DAC=20°.【解析】

根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【详解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.20、证明见解析.【解析】

根据菱形的性质,先证明△ABE≌△ADF,即可得解.【详解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵点E,F分别是BC,CD边的中点,∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.21、(1)9,9;(2)乙;(3)1680棵;【解析】

(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.【详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.22、(1);(2)原分式方程中“?”代表的数是-1.【解析】

(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以得解得经检验,是原分式方程的解.(2)设?为,方程两边同时乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:

①化分式方程为整式方程;

②把增根代入整式方程即可求得相关字母的值.23、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角△ABC中,∠BAC=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论