浙江省武义三中2024届高三教学质量检测试题(Ⅱ)数学试题理试题_第1页
浙江省武义三中2024届高三教学质量检测试题(Ⅱ)数学试题理试题_第2页
浙江省武义三中2024届高三教学质量检测试题(Ⅱ)数学试题理试题_第3页
浙江省武义三中2024届高三教学质量检测试题(Ⅱ)数学试题理试题_第4页
浙江省武义三中2024届高三教学质量检测试题(Ⅱ)数学试题理试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省武义三中2024届高三教学质量检测试题(Ⅱ)数学试题理试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.2.若集合,则=()A. B. C. D.3.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.4.已知函数满足,设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.6.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为()A. B. C. D.7.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.8.执行如下的程序框图,则输出的是()A. B.C. D.9.已知复数满足:(为虚数单位),则()A. B. C. D.10.设不等式组表示的平面区域为,若从圆:的内部随机选取一点,则取自的概率为()A. B. C. D.11.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π12.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的一条渐近线方程为,则该双曲线的离心率为____________.14.过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为___________.15.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°16.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,18.(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:19.(12分)已知函数.(Ⅰ)求函数的极值;(Ⅱ)若,且,求证:.20.(12分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.21.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.附表及公式:.22.(10分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.2、C【解析】

求出集合,然后与集合取交集即可.【详解】由题意,,,则,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题.3、C【解析】

令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.4、B【解析】

结合函数的对应性,利用充分条件和必要条件的定义进行判断即可.【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题.5、A【解析】

根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.6、B【解析】

由抛物线的定义转化,列出方程求出p,即可得到抛物线方程.【详解】由抛物线y2=2px(p>0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,,所以抛物线的标准方程为:y2=2x.故选B.【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题.7、D【解析】

根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【点睛】本题主要考查数列递推公式的应用,属于中档题.8、A【解析】

列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.9、A【解析】

利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.10、B【解析】

画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出中在圆内部的区域,如图所示,因为直线,的倾斜角分别为,,所以由图可得取自的概率为.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.11、C【解析】

两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.12、B【解析】

分别作出各个选项中的函数的图象,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据渐近线得到,,计算得到离心率.【详解】,一条渐近线方程为:,故,,.故答案为:.【点睛】本题考查了双曲线的渐近线和离心率,意在考查学生的计算能力.14、2【解析】

联立直线与抛物线的方程,根据一元二次方程的根与系数的关系以及面积关系求解即可.【详解】如图,设,由,则,由可得,由,则,所以,得.故答案为:2【点睛】此题考查了抛物线的性质,属于中档题.15、4【解析】

设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O【点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.16、164【解析】

只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【详解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;则a4=+2+=5+8+3=16.故答案为:16,4.【点睛】本题主要考查了多项式展开中的特定项的求解,可以用赋值法也可以用二项展开的通项公式求解,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选取更合适;(2);(3)时,煤气用量最小.【解析】

(1)根据散点图的特点,可得更适合;(2)先建立关于的回归方程,再得出关于的回归方程;(3)写出函数关系,利用基本不等式得出最小值及其成立的条件.【详解】(1)选取更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型;(2)由公式可得:,,所以所求回归直线方程为:;(3)根据题意,设,则煤气用量,当且仅当时,等号成立,即时,煤气用量最小.【点睛】此题考查根据题意求回归方程,利用线性回归方程的求法得解,结合基本不等式求最值.18、(1)时,函数单调递增,,函数单调递减,;(2)见解析【解析】

(1)求出函数的定义域与导函数,利用导数求函数的单调区间,即可得到函数的极值;(2)易得且,要证明,即证,即证,即对恒成立,构造函数,,利用导数研究函数的单调性与最值,即可得证;【详解】解:(1)因为定义域为,所以,时,,即在和上单调递增,当时,,即函数在单调递减,所以在处取得极小值,在处取得极大值;,;(2)易得,要证明,即证,即证即证对恒成立,令,,则令,解得,即在上单调递增;令,解得,即在上单调递减;则在取得极小值,也就是最小值,从而结论得证.【点睛】本题考查利用导数研究函数的单调性与极值,利用导数证明不等式,考查运算求解能力,考查函数与方程思想,属于中档题.19、(Ⅰ)极大值为:,无极小值;(Ⅱ)见解析.【解析】

(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可求出函数的极值;(Ⅱ)得到,根据函数的单调性问题转化为证明,即证,令,根据函数的单调性证明即可.【详解】(Ⅰ)的定义域为且令,得;令,得在上单调递增,在上单调递减函数的极大值为,无极小值(Ⅱ),,即由(Ⅰ)知在上单调递增,在上单调递减且,则要证,即证,即证,即证即证由于,即,即证令则恒成立在递增在恒成立【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,考查运算求解能力及化归与转化思想,关键是能够构造出合适的函数,将问题转化为函数最值的求解问题,属于难题.20、(1)见解析(2)【解析】

(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可求得二面角的余弦值.【详解】(1)证明:设,连接,如下图所示:∵侧面为菱形,∴,且为及的中点,又,则为直角三角形,,又,,即,而为平面内的两条相交直线,平面.(2)平面,平面,,即,从而两两互相垂直.以为坐标原点,的方向为轴正方向,为单位长度,建立如图的空间直角坐标系,为等边三角形,,,,设平面的法向量为,则,即,∴可取,设平面的法向量为,则.同理可取,由图示可知二面角为锐二面角,∴二面角的余弦值为.【点睛】本题考查了线面垂直的判定方法,利用空间向量方法求二面角夹角的余弦值,注意建系时先证明三条两两垂直的直线,属于中档题.21、有的把握认为顾客购物体验的满意度与性别有关;.【解析】

由题得,根据数据判断出顾客购物体验的满

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论