版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海杨浦区2024年中考四模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54° B.64° C.74° D.26°2.如图所示:有理数在数轴上的对应点,则下列式子中错误的是()A. B. C. D.3.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率0.9600.9400.9550.9500.9480.9520.950下面有三个推断:①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;②根据上表,估计绿豆发芽的概率是0.95;③若n为4000,估计绿豆发芽的粒数大约为3800粒.其中推断合理的是()A.① B.①② C.①③ D.②③4.下列图形中是轴对称图形但不是中心对称图形的是()A. B. C. D.5.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A. B. C. D.6.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.2 B.2 C.4 D.37.如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为()A.π B.π C.π D.π8.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变 B.平均数增加,中位数不变C.平均数不变,中位数增加 D.平均数和中位数都增大9.tan45°的值等于()A. B. C. D.110.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B. C. D.211.在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是()A. B.C. D.12.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为()A.12cm B.12cm C.24cm D.24cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.14.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.15.的倒数是_____________.16.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.17.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.18.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.20.(6分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.21.(6分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.
(1)A,B两种型号的自行车的单价分别是多少?
(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.22.(8分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,,)23.(8分)解分式方程:=124.(10分)化简,再求值:25.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.26.(12分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.(1)求k和b的值;(2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.27.(12分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=(用含a,b的代数式表示);若b=3,tan∠DCE=,求a的值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.2、C【解析】
从数轴上可以看出a、b都是负数,且a<b,由此逐项分析得出结论即可.【详解】由数轴可知:a<b<0,A、两数相乘,同号得正,ab>0是正确的;
B、同号相加,取相同的符号,a+b<0是正确的;
C、a<b<0,,故选项是错误的;
D、a-b=a+(-b)取a的符号,a-b<0是正确的.
故选:C.【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.3、D【解析】
①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.【详解】①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.故选D.【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.4、C【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、B【解析】
如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.
∵四边形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵点E是CD中点
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等边三角形,且E是CD中点
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折叠性质可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.6、A【解析】连接CC′,∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等边三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC边的中线,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC•cos∠DBC′=4×=2,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.7、D【解析】
点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【详解】如图,点F的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长=.故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.8、B【解析】
本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然;
由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
故选B.【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.9、D【解析】
根据特殊角三角函数值,可得答案.【详解】解:tan45°=1,故选D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10、C【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.11、B【解析】
根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为,得出方程:(80+2x)(50+2x)=5400,整理后得:故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.12、D【解析】
过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.【详解】如图,过A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故选:D.【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、或﹣.【解析】
试题分析:当点F在OB上时,设EF交CD于点P,可求点P的坐标为(,1).则AF+AD+DP=3+x,CP+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得:x=.由对称性可求当点F在OA上时,x=﹣,故满足题意的x的值为或﹣.故答案是或﹣.【点睛】考点:动点问题.14、(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB1=,B1所在的象限为第一象限;∴OB2=()2,B2在x轴正半轴;∴OB3=()3,B3所在的象限为第四象限;∴OB4=()4,B4在y轴负半轴;∴OB5=()5,B5所在的象限为第三象限;∴OB6=()6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).15、【解析】先把带分数化成假分数可得:,然后根据倒数的概念可得:的倒数是,故答案为:.16、50°【解析】
延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.【详解】延长BF交CD于G由折叠知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案为50°.【点睛】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质.证明△BCG≌△DAE是解答本题的关键.17、【解析】
通过找到临界值解决问题.【详解】由题意知,令3x-1=x,x=,此时无输出值当x>时,数值越来越大,会有输出值;当x<时,数值越来越小,不可能大于10,永远不会有输出值故x≤,故答案为x≤.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.18、2+4【解析】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.【详解】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周长的最小值=2+4,故答案为:2+4.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)见解析.【解析】
(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.20、(1)证明见解析;(2);拓展:【解析】
(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;拓展:对△ABD的外心位置进行推理,即可得出结论.【详解】(1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,∴BD=CE,∴BC-BD=BC-CE,即BE=CD,∵∠B=∠C=40°,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)解:∵∠B=∠C=40°,AB=BE,∴∠BEA=∠EAB=(180°-40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=(180°-40°)=70°,∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;拓展:解:若△ABD的外心在其内部时,则△ABD是锐角三角形.∴∠BAD=140°-∠BDA<90°.∴∠BDA>50°,又∵∠BDA<90°,∴50°<∠BDA<90°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.21、(1)A型自行车的单价为210元,B型自行车的单价为240元.(2)最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.【解析】分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题.(2)设购买A型自行车a辆,B型自行车的(600-a)辆.总费用为w元.构建一次函数,利用一次函数的性质即可解决问题.详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元,
由题意,
解得,
型自行车的单价为210元,B型自行车的单价为240元.
(2)设购买A型自行车a辆,B型自行车的辆.总费用为w元.
由题意,
,
随a的增大而减小,
,
,
∴当时,w有最小值,最小值,
∴最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.点睛:本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型.22、(1)AB≈1395米;(2)没有超速.【解析】
(1)先根据tan∠ADC=2求出AC,再根据∠ABC=35°结合正弦值求解即可(2)根据速度的计算公式求解即可.【详解】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395米;(2)∵AB=1395,∴该车的速度==55.8km/h<60千米/时,故没有超速.【点睛】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.23、x=1【解析】
分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】化为整式方程得:2﹣3x=x﹣2,解得:x=1,经检验x=1是原方程的解,所以原方程的解是x=1.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24、【解析】试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.试题解析:原式==当时,原式=.考点:1.二次根式的化简求值;2.分式的化简求值.25、(1)50,108°,补图见解析;(2)9.6;(3).【解析】
(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年定制版新能源停车位租赁合同版
- 中国矿业大学《热工学》2021-2022学年第一学期期末试卷
- 中国矿业大学(北京)《计算机图形学》2019-2020学年第一学期期末试卷
- 2024年专业脚手架搭建服务承包合同范本版B版
- 2024版劳动合同:某知名企业员工聘用3篇
- 10kv变配电课程设计
- 2024年度油田设施涂装油漆工程合同2篇
- 中国地质大学(武汉)《计算机高级语言程序设计(C++)》2021-2022学年第一学期期末试卷
- 2024年度专利实施许可合同的法律风险2篇
- 2024年房产中介二手房居间合同样本版B版
- 中学学生积分入团实施细则
- 国寿新绿洲团体意外伤害保险(A款)条款
- 数据结构B期末考试B卷及参考答案
- 定期存单质押协议
- 新时代质量管理体系能力成熟度自评表
- 母婴保健法-课件
- (完整word版)田字格-word打印版
- 工程材料检测实验计划表
- 医院内静脉血栓栓塞症防治质量评价与管理指南(2022版)
- 2023年电大开放英语作文范文
- 建筑施工现场安全管理监理检查记录表
评论
0/150
提交评论