2023届陕西省宝鸡市渭滨区数学八年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2023届陕西省宝鸡市渭滨区数学八年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2023届陕西省宝鸡市渭滨区数学八年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2023届陕西省宝鸡市渭滨区数学八年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2023届陕西省宝鸡市渭滨区数学八年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列命题是假命题的是()A.直角都相等 B.对顶角相等 C.同位角相等 D.两点之间,线段最短2.下列说法不正确的是()A.的平方根是 B.-9是81的一个平方根C. D.0.2的算术平方根是0.023.随着电子技术的不断进步,电子元件的尺寸大幅缩小,电脑芯片上某电子元件大约只有,这个数用科学记数法表示为()A. B. C. D.4.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6 D.(ab)2=ab25.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣36.下列图形中,是轴对称图形且只有三条对称轴的是()A. B. C. D.7.如图,在平面直角坐标系中,点P坐标为(-4,3),以点B(-1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-6和-5之间 B.-5和-4之间 C.-4和-3之间 D.-3和-2之间8.如图,,,,则的度数是()A.25° B.35° C.45° D.50°9.如果三角形的一个内角等于其它两个内角的差,那么这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.斜三角形10.下列命题中,属于真命题的是()A.三角形的一个外角大于内角 B.两条直线被第三条直线所截,同位角相等C.无理数与数轴上的点是一一对应的 D.对顶角相等11.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)12.甲从A地到B地要走m小时,乙从B地到A地要走n小时,若甲、乙二人同时从A、B两地出发,经过几小时相遇()A.(m+n)小时 B.小时 C.小时 D.小时二、填空题(每题4分,共24分)13.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为__________________.14.若点在第二、四象限角平分线上,则点的坐标为__________.15.三个全等三角形按如图的形式摆放,则_______________度.16.甲乙丙丁四位同学在5次数学测试中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是______.17.如图,的为40°,剪去后得到一个四边形,则__________度.18.如图,在中,∠A=60°,D是BC边上的中点,DE⊥BC,∠ABC的平分线BF交DE于内一点P,连接PC,若∠ACP=m°,∠ABP=n°,则m、n之间的关系为______.三、解答题(共78分)19.(8分)甲、乙两名队员参加设计训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均数(环)中位数(环)众数(环)方差甲乙(1)表格中,,;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应选哪名队员?(3)如果乙再射击次,命中环,那么乙的射击成绩的方差.(填“变大”“变小”或“不变”)20.(8分)如图,在和中,,,与相交于点.(1)求证:;(2)是何种三角形?证明你的结论.21.(8分)如图,为等边三角形,延长到,延长到,,连结,,求证:.22.(10分)已知在平面直角坐标系中有,,三点,请回答下列问题:(1)在坐标系内描出以,,三点为顶点的三角形.(2)求的面积.(3)画出关于轴对称的图形23.(10分)已知:如图①所示的三角形纸片内部有一点P.任务:借助折纸在纸片上画出过点P与BC边平行的线段FG.阅读操作步骤并填空:小谢按图①~图④所示步骤进行折纸操作完成了画图任务.在小谢的折叠操作过程中,(1)第一步得到图②,方法是:过点P折叠纸片,使得点B落在BC边上,落点记为,折痕分别交原AB,BC边于点E,D,此时∠即∠=__________°;(2)第二步得到图③,参考第一步中横线上的叙述,第二步的操作指令可叙述为:_____________,并求∠EPF的度数;(3)第三步展平纸片并画出两次折痕所在的线段ED,FG得到图④.完成操作中的说理:请结合以上信息证明FG∥BC.24.(10分)如图1,是直角三角形,,的角平分线与的垂直平分线相交于点.(1)如图2,若点正好落在边上.①求的度数;②证明:.(2)如图3,若点满足、、共线.线段、、之间是否满足,若满足请给出证明;若不满足,请说明理由.25.(12分)已知是等边三角形,点分别在上,且,(1)求证:≌;(2)求出的度数.26.在平面直角坐标系中在图中描出,,,连接AB、BC、AC,得到,并将向右平移5个单位,再向上平移2个单位的得到;作出,使它与关于x轴对称.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据真假命题的概念,可知直角都相等是真命题,对顶角相等是真命题,两点之间,线段最短,是真命题,同位角相等的前提是两直线平行,故是假命题.故选C.2、D【分析】依据平方根、算术平方根的性质进行判断即可.【详解】A、的平方根是,故A正确,与要求不符;B、-9是81的一个平方根,故B正确,与要求不符;C、,故C正确,与要求相符;D、0.2的算术平方根不是0.02,故D错误,与要求相符.故选D.【点睛】本题主要考查的是平方根、算术平方根的性质,熟练掌握平方根、算术平方根的性质是解题的关键.3、D【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000645=.故选D.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).4、C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.5、D【解析】∵方程ax+b=0的解是直线y=ax+b与x轴的交点横坐标,∴方程ax+b=0的解是x=-3.故选D.6、C【解析】首先确定轴对称图形,再根据对称轴的概念,确定对称轴的条数.【详解】解:A、不是轴对称图形;B、是轴对称图形,有2条对称轴;C、是轴对称图形,有3条对称轴;D、是轴对称图形,有4条对称轴;故选:C.【点睛】掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.能够熟练说出轴对称图形的对称轴条数.7、A【解析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【详解】∵点P坐标为(-4,3),点B(-1,0),

∴OB=1,

∴BA=BP==3,

∴OA=3+1,

∴点A的横坐标为-3-1,

∵-6<-3-1<-5,

∴点A的横坐标介于-6和-5之间.

故选A.【点睛】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解题的关键.8、A【分析】根据平行线的性质求出∠DOE的度数,再根据外角的性质得到∠C的度数.【详解】∵,,∴∠DOE=,∵∠DOE=∠C+∠E,,∴∠C=25°,故选:A.【点睛】此题考查平行线的性质,三角形的外角性质,观察图形理解各角之间的关系会利用性质定理解题是关键.9、C【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【详解】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°

故这个三角形是直角三角形.

故选:C.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.10、D【分析】根据三角形外角性质、平行线的性质、无理数和对顶角进行判断即可.【详解】解:A、三角形的一个外角大于与它不相邻的内角,原命题是假命题,不符合题意;

B、两条平行线被第三条直线所截,同位角相等,原命题是假命题,不符合题意;

C、实数与数轴上的点是一一对应的,原命题是假命题,不符合题意;

D、对顶角相等,是真命题,符合题意;

故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11、B【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出1∠A=∠1+∠1这一始终保持不变的性质.【详解】∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,

则1∠A+(180°-∠1)+(180°-∠1)=360°,

∴可得1∠A=∠1+∠1.

故选B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.12、D【解析】假设甲、乙经过x小时相遇,令A、B距离为a,甲从A地到B地要走m小时,则甲的速度为;乙从B地到A地要走n小时,则乙的速度为根据题目中的等量关系列出方程求解即可.【详解】假设甲、乙经过x小时相遇,令A、B距离为a,甲从A地到B地要走m小时,则甲的速度为;乙从B地到A地要走n小时,则乙的速度为根据题意,列方程解得故选:D.【点睛】本题主要考查分式方程的应用,解题的关键是分析题意,找出题目中的等量关系.二、填空题(每题4分,共24分)13、.【详解】解:根据勾股定理列式计算即可得解:∵∠C=90°,AB=7,BC=5,∴.故答案为:.14、(4,-4)【分析】根据第二、第四象限坐标轴夹角平分线上的点,横纵坐标互为相反数,由此就可以得到关于m的方程,解出m的值,即可求得P点的坐标.【详解】解:∵点P(5+m,m-3)在第二、四象限的角平分线上,

∴(5+m)+(m-3)=0,

解得:m=-1,

∴P(4,-4).

故答案为:(4,-4).【点睛】本题考查了点的坐标的知识,注意掌握知识点:第二、四象限的夹角角平分线上的点的横纵坐标互为相反数.15、180°【分析】如图所示,利用平角的定义结合三角形内角和性质以及全等三角形性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,然后进一步求解即可.【详解】如图所示,由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7==540°,∵三个三角形全等,∴∠4+∠9+∠6=180°,∵∠5+∠7+∠8=180°,∴540°−180°−180°=180°,故答案为:180°.【点睛】本题主要考查了全等三角形性质以及三角形内角和性质,熟练掌握相关概念是解题关键.16、丁【分析】根据方差进行判断即可.【详解】∵,,,,∴丁的方差最小,∴成绩最稳定的同学是丁.故答案为:丁.【点睛】本题考查了方差,明确方差的意义是解题的关键.17、1;【分析】根据三角形内角和为180°,得出的度数,再根据四边形的内角和为360°,解得的度数.【详解】根据三角形内角和为180°,得出,再根据四边形的内角和为360°,解得故答案为1.【点睛】本题考查了多边形内角和的公式,利用多边形的内角和,去求其他角的度数.18、m+3n=1【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∴∠PBC+∠PCB+∠ABP=1°-m°,∴3∠ABP=1°-m°,∴3n°+m°=1°,故答案为:m+3n=1.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.三、解答题(共78分)19、(1)7;7.5;7(2)乙,理由见解析;(3)变小.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析;(3)根据方差公式即可求解判断.【详解】(1)甲的平均成绩a==7(环),甲的成绩的众数c=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、1、1、1、9、10,∴乙射击成绩的中位数b==7.5(环),故答案为7;7.5;7(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中1环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大;(3)乙再射击次,命中环,那么乙的射击成绩的方差为:×[(3−7)2+(4−7)2+(6−7)2+3×(7−7)2+3×(1−7)2+(9−7)2+(10−7)2]=×(16+9+1+3+4+9)≈3.1.故方差变小故答案为:变小.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.20、(1)见解析;(2)是等腰三角形,证明见解析【分析】(1)根据已知条件,用HL直接证明Rt△ABC≌Rt△DCB即可;(2)利用全等三角形的对应角相等得到∠ACB=∠DBC,即可证明△OBC是等腰三角形.【详解】证明:(1)在和中,,为公共边,∴(2)是等腰三角形∵∴∴∴是等腰三角形【点睛】此题主要考查学生对直角三角形全等的判定和性质以及等腰三角形的判定的理解和掌握,熟练掌握相关判定定理和性质定理是解题关键.21、详见解析【分析】根据题意首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【详解】解:证明:延长至,使,连接,如图所示,为等边三角形,,为等边三角形,,,,.【点睛】本题主要考查等边三角形的性质与判定以及全等三角形的判定等知识,解决问题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)见解析;(2)5;(3)见解析.【分析】(1)先找出A、B、C三点的坐标,依次连接即可得到△ABC;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)分别作出点A、B、C关于x轴对称的点A'、B'、C',然后顺次连接即可;【详解】解:(1)以,,三点为顶点的△ABC如下图所示;(2)依题意,得轴,且,∴;(3)关于轴对称的图形,如下图所示.【点睛】本题考查了根据轴对称作图以及点的坐标的表示方法.作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;

③按原图形中的方式顺次连接对称点.23、(1)90;(2)过点P折叠纸片,使得点D落在PE上,落点记为,折痕交原AC边于点F;(3)见解析【分析】(1)根据折叠得到,利用邻补角的性质即可得结论;(2)根据(1)的操作指令即可写出第二步;(3)根据(1)(2)的操作过程即可证明结论.【详解】解:(1)因为:所以:故答案为.(2)过点P折叠纸片,使得点D落在PE上,落点记为,折痕交原AC边于点F.由折叠过程可知∠=∠EPF=∠DPF,∵三点共线,∴∠+∠DPF=180°,∴∠=90°,∴∠EPF=90°.(3)完成操作中的说理:∵∠EDC=90°,∠EPF=90°,∴∠EDC=∠EPF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论