




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为()A. B. C. D.2.在下列长度的各组线段中,能组成三角形的是()A.1,2,4 B.1,4,9 C.3,4,5 D.4,5,93.如图,ΔABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠C的度数为()A.30° B.36° C.45° D.72°4.某教师招聘考试分笔试和面试两个环节进行,其中笔试按60%、面试按40%计算加权平均数作为最终的总成绩.吴老师笔试成绩为90分,面试成绩为85分,那么吴老师的总成绩为()A.85分 B.86分 C.87分 D.88分5.下列运算中错误的是()A. B. C.+= D.=46.已知,现把小棒依次摆放在两射线之间,并使小棒在两射线上,从开始,用等长的小棒依次向右摆放,其中为第1根小棒,且,若只能摆放9根小棒,则的度数可以是()A.6° B.7° C.8° D.9°7.下列命题中,真命题是()A.过一点且只有一条直线与已知直线平行B.两个锐角的和是钝角C.一个锐角的补角比它的余角大90°D.同旁内角相等,两直线平行8.下列各式中,计算结果是的是()A. B. C. D.9.如图,在△ABC中,AD⊥BC,添加下列条件后,还不能使△ABD≌△ACD的是()A. B. C. D.10.若分式的值为0,则x的值为()A.0 B.-1 C.1 D.2二、填空题(每小题3分,共24分)11.如图,小明与小敏玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小敏从水平位置CD下降40cm时,这时小明离地面的高度是___________.12.一个正数的两个平方根分别是3a+2和a-1.则a的值是_______.13.观察一组数据,,,,,......,它们是按一定规律排列的,那么这一组数据的第个数是_________.14.如图,上海实行垃圾分类政策后,各街道、各小区都在积极改造垃圾房,在工地一边的靠墙处,用12米长的栏围一个占面积为20平方米的长方形临时垃圾堆放点,栅栏只围三边,并且开一个2米的小门,方便垃圾桶的搬运.设垂直于墙的一边长为米.根据题意,建立关于的方程是____.15.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD②AB=CD③AB⊥BC④AO=OC其中正确的结论是_______________.(把你认为正确的结论的序号都填上)16.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为__________微米.17.如图,在中,,的垂直平分线交于点,交于点.若,的度数为________.18.如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有_____(将所有正确答案的序号填写在横线上).三、解答题(共66分)19.(10分)如图,平行四边形的对角线交于点,分别过点作,连接交于点.(1)求证:;(2)当等于多少度时,四边形为菱形?请说明理由.20.(6分)某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)6045租金(元/辆)550450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元.21.(6分)如图,在平面直角坐标系中,点A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.(1)图1中,点C的坐标为;(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B作BF⊥BE交y轴于点F.①当点E为线段CD的中点时,求点F的坐标;②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.22.(8分)为全面打赢脱贫攻坚战,顺利完成古蔺县2019年脱贫摘帽任务,我县某乡镇决定对辖区内一段公路进行改造,根据脱贫攻坚时间安排,需在28天内完成该段公路改造任务.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.23.(8分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.24.(8分)如图,在等腰中,,点在线段上运动(不与重合),连结,作,交线段于点.(1)当时,=°;点从点向点运动时,逐渐变(填“大”或“小”);(2)当等于多少时,,请说明理由;(3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.25.(10分)如图,是等边三角形,是的角平分线上一点,于点,线段的垂直平分线交于点,垂足为点.(1)若,求的长.(2)连接,,试判断的形状,并说明理由.26.(10分)如图,直线l1:y=﹣x与直线l2相交于点A,已知点A的纵坐标为,直线l2交x轴于点D,已知点D横坐标为﹣4,将直线l1向上平移3个单位,得到直线l3,交x轴于点C,交直线l2于点B.(1)求直线l2的函数表达式;(2)求的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据多边形的内角和=180°(n-2),其中n为正多边形的边数,计算即可【详解】解:正六边形的内角和为:180°×(6-2)=720°故选C.【点睛】此题考查的是求正六边形的内角和,掌握多边形的内角和公式是解决此题的关键.2、C【解析】试题分析:根据三角形的三边关系:两边之和大于第三边对各项逐一判断A选项,1+2<4;故不能组成三角形B选项,1+4<9;故不能组成三角形C选项,3+4>5;故可以组成三角形D选项,4+5=9;故不能组成三角形故选C考点:三角形的三边关系点评:此题主要考查学生对应用三角形三边关系判定三条线段能否构成三角形的掌握情况,注意只要两条较短的线段长度之和大于第三条线段的长度即可判定三条线段能构成一个三角形3、D【解析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠C的度数.【详解】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180°-x2可得2x=180°-x2解得:x=36°,则∠C=故选:D.【点睛】此题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.4、D【分析】根据加权平均数的计算方法进行计算即可得解.【详解】依题意得:分,故选:D.【点睛】本题主要考查了加权平均数,熟练掌握加权平均数得解法是解决本题的关键.5、C【分析】根据二次根式的运算法则和性质逐一判断可得答案.【详解】A.,正确,此选项不符合题意;B.,正确,此选项不符合题意;C.与不是同类二次根式,不能合并,此选项错误,符合题意;D.=4,正确,此选项不符合题意;故选C.【点睛】本题考查了二次根式的运算,二次根式的化简,熟练掌握相关的运算法则是解题的关键.6、D【分析】根据等腰三角形的性质和三角形的外角性质可得∠A2A1A3=2θ,∠A3A2A4=3θ,……,以此类推,可得摆放第9根小棒后,∠A9A8A10=9θ,,由于只能放9根,则且,求得的取值范围即可得出答案.【详解】∵,∴∠AA2A1=∠BAC=θ,∴∠A2A1A3=2θ,同理可得∠A3A2A4=3θ,……以此类推,摆放第9根小棒后,∠A9A8A10=9θ,,∵只能放9根,∴即,解得,故选:D.【点睛】本题考查了等腰三角形的性质与三角形的外角性质,熟练掌握等边对等角,以及三角形的外角等于不相邻的两个内角之和,是解题的关键.7、C【分析】根据平行线的公理及判定、角的定义和补角和余角的定义可逐一判断.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,是假命题;B、两个锐角的和不一定是钝角,如20°+20°=40°,是假命题;C、一个锐角的补角比它的余角大90°,是真命题;D、同旁内角互补,两直线平行,是假命题;故选:C.【点睛】本题主要考查平行线的公理及性质,掌握平行线的公理及判定、角的定义和补角和余角的定义是关键.8、D【解析】试题分析:利用十字相乘法进行计算即可.原式=(x-2)(x+9)故选D.考点:十字相乘法因式分解.9、D【分析】根据全等三角形的判定定理解答即可.【详解】∵AD⊥BC∴∠ADC=∠ADB=90°若添加AB=AC,又AD=AD则可利用“HL”判定全等,故A正确;若添加BD=CD,又AD=AD则可利用“SAS”判定全等,故B正确;若添加∠B=∠C,又AD=AD则可利用“AAS”判定全等,故C正确;若添加AD=BD,无法证明两个三角形全等,故D错误.故选:D【点睛】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法“SSS”、“AAS”、“SAS”、“ASA”“HL”是关键.10、B【详解】解:依题意得,x+1=2,解得x=-1.当x=-1时,分母x+2≠2,即x=-1符合题意.故选B.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.二、填空题(每小题3分,共24分)11、90cm【解析】试题解析:∵O是CD和FG的中点,∴FO=OG,CO=DO,又∠FOC=∠GOD,∴ΔFOC≌ΔGOD,∴FC=GD=40cm,∴小明离地面的高度是:50+40=90cm.12、.【详解】根据题意得:3a+2+a-1=0,解得:a=.考点:平方根.13、【分析】根据题意可知,分子是从开始的连续奇数,分母是从开始的连续自然数的平方,进一步即可求得第个数为.【详解】∵这组数据中的每个数都是分数,分子是从开始的连续奇数,分母是从开始的连续自然数的平方.∴这组数据的第个数是(为正整数)故答案是:(为正整数)【点睛】对于找规律的题目,通常按照顺序给出一系列量,要求我们根据这些已知的量找出一般的规律,找出的规律通常包含着序列号,因此,把变量和序列号放在一起加以比较,就比较容易的发现其中的奥秘.14、【分析】设垃圾房的宽为x米,由栅栏的长度结合图形,可求出垃圾房的长为(14-2x)米,再根据矩形的面积公式即可列出关于x的一元二次方程,此题得解.【详解】设垃圾房的宽为x米,则垃圾房的长为(14-2x)米,根据题意得:x(14-2x)=1.故答案为:x(14-2x)=1.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15、①②④【分析】四边形ABCD沿直线l对折后互相重合,即△ABC与△ADC关于L对称,又有AD∥BC,则有四边形ABCD为平行四边形.根据轴对称的性质可知.【详解】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.16、4.1×10﹣1【解析】0.0041=4.1×10﹣1.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定(包括小数点前面的0).17、38°【分析】设∠A的度数为x,根据线段的垂直平分线的性质得到DB=DA,用x表示出∠ABC、∠C的度数,根据三角形内角和定理列式计算即可.【详解】解:设∠A的度数为x,
∵MN是AB的垂直平分线,
∴DB=DA,
∴∠DBA=∠A=x,
∵AB=AC,
∴∠ABC=∠C=33°+x,
∴33°+x+33°+x+x=180°,
解得x=38°.
故答案为:38°.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18、①③④.【分析】①根据角平分线的定义得到∠EBC=∠ABC,∠DCE=∠ACD,根据外角的性质即可得到结论;
②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;
③由BG=GE,CH=EH,于是得到BG-CH=GE-EH=GH.即可得到结论;
④由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论.【详解】①BE平分∠ABC,∴∠EBC=∠ABC,∵CE平分∠ACD,∴∠DCE=∠ACD,∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∴∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+∠BAC,∴∠BEC=∠BAC,故①正确;∵②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所以不能得出全等的结论,故②错误;③BE平分∠ABC,∴∠ABE=∠CBE,∵GE∥BC,∴∠CBE=∠GEB,∴∠ABE=∠GEB,∴BG=GE,同理CH=HE,∴BG−CH=GE−EH=GH,∴BG=CH+GH,故③正确;④过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180−2z,∠ACB=180−2x,∵∠ABC+∠ACB+∠BAC=180,∴2y+180−2z+180−2x=180,∴x+z=y+90,∵z=y+∠AEB,∴x+y+∠AEB=y+90,∴x+∠AEB=90,即∠ACE+∠AEB=90,故④正确.故答案为①③④.【点睛】本题考查了平行线的性质,角平分线的定义,角平分线的性质和判定,三角形内角和定理,三角形的外角性质等多个知识点.判断出AE是△ABC的外角平分线是关键.三、解答题(共66分)19、(1)见解析;(2)当满足时,四边形为菱形,证明详见解析【分析】(1)证明四边形OCFD是平行四边形,得出OD=CF,证出OB=CF,再证明全等即可(2)证出四边形ABCD是矩形,由矩形的性质得出OC=OD,即可得出四边形OCFD为菱形.【详解】(1)证明:∵,∴四边形是平行四边形,,∴,∵四边形是平行四边形,∴,∴,在和中,,∴.(2)当满足时,四边形为菱形.理由如下:∵,四边形是平行四边形,∴四边形是矩形∴∴,∴四边形为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.20、(1)y=100x+3150;(2)5,1.【分析】(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;(2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.【详解】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=1(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是1元.21、(1)C(4,1);(2)①F(0,1),②【解析】试题分析:过点向轴作垂线,通过三角形全等,即可求出点坐标.过点E作EM⊥x轴于点M,根据的坐标求出点的坐标,OM=2,得到得到△OBF为等腰直角三角形,即可求出点的坐标.直接写出点纵坐标的取值范围.试题解析:(1)C(4,1),(2)法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,∴OM=2,∴∠OBF=45°,∴△OBF为等腰直角三角形,∴OF=OB=1.法二:在OB的延长线上取一点M.∵∠ABC=∠AOB=90°.∴∠ABO+∠CBM=90°.∠ABO+∠BAO=90°.∴∠BAO=∠CBM.∵C(4,1).D(0,1).又∵CD∥OM,CD=4.∴∠DCB=∠CBM.∴∠BAO=∠ECB.∵∠ABC=∠FBE=90°.∴∠ABF=∠CBE.∵AB=BC.∴△ABF≌△CBE(ASA).∴AF=CE=CD=2,∵A(0,3),OA=3,∴OF=1.∴F(0,1),(3).22、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队单独承包该项工程,理由见解析【分析】(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需2天,根据题意列出分式方程即可求出答案;
(2)因为甲乙两工程队均能在规定的28天内单独完成,所以有二种方案,根据条件列出算式即可求出答案.【详解】解:(1)设甲工程队单独完成该工程需经天,则乙工程队单独完成该工程需天.根据题意得:,解得:,经检验,是原方程的解,∴当时,,答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)因为乙工程队单独完成该工程需30天,超过了预定工期,所以有如下二种方案:方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);方案二:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).∵70>67.5,∴应该选择甲工程队承包该项工程.【点睛】本题考查了分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23、(1)见解析;(2)见解析.【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.24、(1)35°,小;(2)当DC=3时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)根据三角形内角和定理得到∠BAD=35°,点从点向点运动时,∠BAD变大,三角形内角和定理即可得到答案;
(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;
(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】解:(1)∵∠B=40°,∠ADB=105°,
∴∠BAD=180°-∠B-∠ADB=180°-105°-40°=35°,
∵点从点向点运动时,∠BAD变大,且∠BDA=180°-40°-∠BAD∴逐渐变小(2)当DC=3时,△ABD≌△DCE,
理由:∵AB=AC,
∴∠C=∠B=40°,∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中介房子出售合同标准文本
- 小白兔乖乖课件
- 养护劳务合同标准文本
- 乡村建筑销售合同标准文本
- 中医诊所招聘合同样本
- 供货卫浴合同样本
- etc改造监理合同样本
- 修建工地合同标准文本
- 养驴合同标准文本
- 乙方自愿转让合同样本
- 外墙无机泡沫保温板现场施工方法
- 劳动教育论文3000字大学生
- 任务管理:抓对事授权人促落实
- 旋挖钻机安装拆卸施工方案
- 动态血压检测的临床意义
- GB/T 42061-2022医疗器械质量管理体系用于法规的要求
- YS/T 446-2011钎焊式热交换器用铝合金复合箔、带材
- 敏感功能材料02电功能材料
- JJF 1869-2020石油产品倾点浊点测定仪校准规范
- GB/T 31586.2-2015防护涂料体系对钢结构的防腐蚀保护涂层附着力/内聚力(破坏强度)的评定和验收准则第2部分:划格试验和划叉试验
- GB/T 28901-2012焦炉煤气组分气相色谱分析方法
评论
0/150
提交评论