2023届江苏省泰州市周庄初级中学八年级数学第一学期期末经典模拟试题含解析_第1页
2023届江苏省泰州市周庄初级中学八年级数学第一学期期末经典模拟试题含解析_第2页
2023届江苏省泰州市周庄初级中学八年级数学第一学期期末经典模拟试题含解析_第3页
2023届江苏省泰州市周庄初级中学八年级数学第一学期期末经典模拟试题含解析_第4页
2023届江苏省泰州市周庄初级中学八年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.点M B.点N C.点P D.点Q2.如图,线段关于轴对称的线段是()A. B. C. D.3.下列运算正确的是()A.(8x3-4x2)÷4x=2x2-x B.x5x2=x10C.x2y3÷(xy3)=xy D.(x2y3)2=x4y54.下列手机APP图案中,属于轴对称的是()A. B. C. D.5.在下列长度的各组线段中,能组成三角形的是()A.1,2,4 B.1,4,9 C.3,4,5 D.4,5,96.用我们常用的三角板,作的高,下列三角板位置放置正确的是()A. B. C. D.7.在平面直角坐标系中,点到原点的距离是()A.1 B. C.2 D.8.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60° B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60° D.三角形中没有一个内角小于或等于60°9.由下列条件不能判定为直角三角形的是()A. B.C. D.10.点P(-2,-8)关于y轴对称点的坐标是(a-2,3b+4),则a、b的值是()A.a=-4,b=-4 B.a=-4,b=4 C.a=4,b=-4 D.a=4,b=-4二、填空题(每小题3分,共24分)11.纳米是非常小的长度单位,,将用科学记数法表示为__________.12.直线与直线平行,且经过点(﹣2,3),则=.13.如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB=5,AD=13,则EF=_____.14.已知一个等腰三角形的顶角30°,则它的一个底角等于_____________.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.16.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为______.17.若a-b=1,则的值为____________.18.如图所示,在中,,将点C沿折叠,使点C落在边D点,若,则______.三、解答题(共66分)19.(10分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.20.(6分)化简:(1)(2)21.(6分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;(2)△ABC的面积为______;(3)判断△ABC的形状,并说明理由.22.(8分)如图,网格中小正方形的边长为1,(0,4).(1)在图中标出点,使点到点,,,的距离都相等;(2)连接,,,此时是___________三角形;(3)四边形的面积是___________.23.(8分)如图1,的边在直线上,,且的边也在直线上,边与边重合,且.(1)直接写出与所满足的数量关系:_________,与的位置关系:_______;(2)将沿直线向右平移到图2的位置时,交于点Q,连接,求证:;(3)将沿直线向右平移到图3的位置时,的延长线交的延长线于点Q,连接,试探究与的数量和位置关系?并说明理由.24.(8分)(1)(2)(3)25.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.(1)求证:△OBC≌△ABD;(2)若以A,E,C为顶点的三角形是等腰三角形,求点C的坐标.26.(10分)(1)分解因式:①②(2)解方程:

参考答案一、选择题(每小题3分,共30分)1、A【分析】利用到角的两边的距离相等的点在角的平分线上进行判断.【详解】点P、Q、M、N中在∠AOB的平分线上的是M点.

故选:A.【点睛】本题主要考查了角平分线的性质,根据正方形网格看出∠AOB平分线上的点是解答问题的关键.2、D【分析】根据轴对称的定义判断即可.【详解】解:由图可得,线段关于轴对称的线段是,故选:D.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的特点是解题的关键.3、A【分析】根据整式的除法法则、同底数幂相乘的法则、积的乘方和幂的乘方法则对各选项进行分析即可求解.【详解】(8x3﹣4x2)÷4x=2x2﹣x,故选项A正确;x1x2=x7≠x10,故选项B错误;x2y3÷(xy3)=x≠xy,故选项C错误;(x2y3)2=x4y6≠x4y1.故选项D错误.故选:A.【点睛】本题考查了同底数幂的乘法、多项式除以单项式、单项式除以单项式及积的乘方,题目比较简单,掌握整式的运算法则是解决本题的关键.4、B【分析】根据轴对称的定义即可判断.【详解】A不是轴对称图形,B是轴对称图形,C不是轴对称图形,D不是轴对称图形,故选B.【点睛】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.5、C【解析】试题分析:根据三角形的三边关系:两边之和大于第三边对各项逐一判断A选项,1+2<4;故不能组成三角形B选项,1+4<9;故不能组成三角形C选项,3+4>5;故可以组成三角形D选项,4+5=9;故不能组成三角形故选C考点:三角形的三边关系点评:此题主要考查学生对应用三角形三边关系判定三条线段能否构成三角形的掌握情况,注意只要两条较短的线段长度之和大于第三条线段的长度即可判定三条线段能构成一个三角形6、D【解析】根据高线的定义即可得出结论.【详解】A、B、C都不是△ABC的边上的高.故选:D.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.7、D【分析】根据:(1)点P(x,y)到x轴的距离等于|y|;

(2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点到原点的距离是故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.8、D【分析】熟记反证法的步骤,直接选择即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即假设三角形中没有一个内角小于或等于60°.故选D.【点睛】此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.9、C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;C、∵()2+()2≠()2,故不能判定是直角三角形;D、∵(b+c)(b-c)=a2,∴b2-c2=a2,即a2+c2=b2,故是直角三角形,正确.故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10、D【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点P(-2,-8)关于y轴的对称点P1的坐标是(a-2,3b+1),

∴a-2=2,3b+1=-8,

解得:a=1,b=-1.

故选:D.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.二、填空题(每小题3分,共24分)11、.【分析】利用科学记数法的表示形式:(),先将转化为,即可得出结果.【详解】解:∵∴故答案为:【点睛】本题主要考查的是科学记数法,掌握科学记数法的表示形式以及正确的应用是解题的关键.12、1.【分析】根据两直线平行可得k值相等,进一步求得b的值即可得解.【详解】∵直线与直线平行,∴k=﹣1,∴直线,把点(﹣1,3)代入得:4+b=3,∴b=﹣1,∴kb=1.故答案为1.考点:两条直线相交或平行问题.13、【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF===12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=,故答案为:.【点睛】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.14、75°【分析】已知明确给出等腰三角形的顶角是30°,根据等腰三角形的性质及三角形的内角和定理易求得底角的度数.【详解】解:∵等腰三角形的顶角是30°,

∴这个等腰三角形的一个底角=(180°-30°)=75°.

故答案为:75°.【点睛】此题考查了等腰三角形的性质及三角形内角和定理,此题很简单,解答此题的关键是熟知三角形内角和定理及等腰三角形的性质.15、12°.【解析】设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∠P2P3P4=∠P13P12P10=3x,……,∠P7P6P8=∠P8P9P7=7x.∴∠AP7P8=7x,∠AP8P7=7x.在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.16、1【分析】利用基本作图得到MN垂直平分AB,则DA=DB,利用等线段代换得到BC+AC=10,然后计算△ABC的周长.【详解】由作法得MN垂直平分AB,∴DA=DB,∵△ADC的周长为10,∴DA+CD+AC=10,∴DB+CD+AC=10,即BC+AC=10,∴△ABC的周长=BC+AC+AB=10+8=1.故答案为1.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了线段垂直平分线的性质.17、1【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:=(a+b)(a-b)-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.18、1【分析】根据折叠的性质可得∠EDA=90°,ED=EC=6cm,再根据直角三角形30°角所对边是斜边的一半可得AE,从而可得AC.【详解】解:根据折叠的性质DE=EC=6cm,∠EDB=∠C=90°,∴∠EDA=90°,∵∠A=30°,∴AE=2DE=12cm,∴AC=AE+EC=1cm,故答案为:1.【点睛】本题考查折叠的性质,含30°角的直角三角形.理解直角三角形斜边上的中线等于斜边的一半.三、解答题(共66分)19、(1)证明见解析;(2)4.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【详解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【点睛】考点:全等三角形的判定与性质.20、(1);(2)【分析】(1)根据二次根式的运算法则,即可得到答案;(2)根据平方差和完全平方公式,结合去括号法则与合并同类项法则,即可得到答案.【详解】(1)原式==;(2)原式===.【点睛】本题主要考查二次根式的化简与整式的化简,熟练掌握二次根式的运算法则,乘法公式以及合并同类项,去括号法则,是解题的关键.21、(1)(-2,-1);(2)5;(3)△ABC是直角三角形,∠ACB=90°.【解析】(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【详解】解:(1)则B的坐标是(-2,-1).故答案是(-2,-1);(2)S△ABC=4×4-×4×2-×3×4-×1×2=5,故答案是:5;(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.【点睛】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.22、(1)见解析;(2)作图见解析;等腰直角;(3)4.【分析】(1)线段AB、线段BC、线段CD的垂直平分线的交点即为所求;(2)根据勾股定理求出PO、PD、OD的长,然后利用勾股定理逆定理进行判断;(3)用四边形ABCD所在的等腰直角三角形的面积减去一个小等腰直角三角形的面积即可.【详解】解:(1)如图所示,点P即为所求;(2)如图所示,,,,∴PO=PD,PO2+PD2=OD2,∴是等腰直角三角形;(3)四边形的面积=.【点睛】本题主要考查了线段垂直平分线的性质、勾股定理及其逆定理的应用等知识,根据线段垂直平分线的性质找出点P的位置是解题的关键.23、(1)AB=AP

,AB⊥AP

;(2)证明见解析;(3)AP=BQ,AP⊥BQ,证明见解析.【分析】(1)根据等腰直角三角形的性质可得∠BAP=45°+45°=90°,根据垂直平分线的性质可得AB=AP;(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;(3)类比(2)的证明就可以得到,证明垂直时,延长QB交AP于点N,则∠PBN=∠CBQ,借助全等得到的角相等,得出∠APC+∠PBN=90°,进一步可得出结论..【详解】解:(1)∵AC⊥BC且AC=BC,

∴△ABC为等腰直角三角形,∠ACB=90°,

∴∠BAC=∠ABC=(180°-∠ACB)=45°,

∵,∠EFP=180°-∠ACB=90°,∴△EFP为等腰直角三角形,BC=AC=CP,∴∠PEF=45°,AB=AP,

∴∠BAP=45°+45°=90°,

∴AB=AP且AB⊥AP;

故答案为:AB=AP

,AB⊥AP

(2)证明:

∵EF=FP,EF⊥FP

∴∠EPF=45°.

∵AC⊥BC,

∴∠CQP=∠EPF=45°

∴CQ=CP

Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP

(SAS).

∴AP=BQ.

(3)AP=BQ,AP⊥BQ,理由如下:

∵EF=FP,EF⊥FP,

∴∠EPF=45°.

∴∠CPQ=∠EPF=45°

∵AC⊥BC

∴CQ=CP

Rt△BCQ和Rt△ACP中,

∴Rt△BCQ≌Rt△ACP

(SAS).

∴AP=BQ,∠BQC=∠APC,如图,延长QB交AP于点N,

则∠PBN=∠CBQ,在Rt△BCQ中,∠BQC+∠CBQ=90°,

∴∠APC+∠PBN=90°,

∴∠PNB=90°,

∴QB⊥AP.【点睛】本题是几何变换综合题,主要考查了等腰直角三角形的性质,垂直平分线的性质,全等三角形的判定和性质.能结合题意找到全等的三角形,并正确证明是解题关键.24、(1);(2);(3)6【分析】(1)将每个二次根式化简后合并同类二次根式即可;(2)根据二次根式的性质按运算顺序计算即可;(3)根据平方差公式计算即可.【详解】(1);(2);(3).【点睛】本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是关键.25、(1)见解析;(2)以A,E,C为顶点的三角形是等腰三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论