![2023届江苏省句容市华阳中学数学八上期末监测试题含解析_第1页](http://file4.renrendoc.com/view2/M03/26/2D/wKhkFmavBn2AYqu_AAG-Abporwg859.jpg)
![2023届江苏省句容市华阳中学数学八上期末监测试题含解析_第2页](http://file4.renrendoc.com/view2/M03/26/2D/wKhkFmavBn2AYqu_AAG-Abporwg8592.jpg)
![2023届江苏省句容市华阳中学数学八上期末监测试题含解析_第3页](http://file4.renrendoc.com/view2/M03/26/2D/wKhkFmavBn2AYqu_AAG-Abporwg8593.jpg)
![2023届江苏省句容市华阳中学数学八上期末监测试题含解析_第4页](http://file4.renrendoc.com/view2/M03/26/2D/wKhkFmavBn2AYqu_AAG-Abporwg8594.jpg)
![2023届江苏省句容市华阳中学数学八上期末监测试题含解析_第5页](http://file4.renrendoc.com/view2/M03/26/2D/wKhkFmavBn2AYqu_AAG-Abporwg8595.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{,}=-1的解为()A.1 B.2 C.1或2 D.1或-22.无论取什么数,总有意义的分式是()A. B. C. D.3.下列图标中是轴对称图形的是()A. B. C. D.4.如图,已知和都是等腰直角三角形,,则的度数是().A.144° B.142° C.140° D.138°5.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是()A. B.C. D.6.下列说法正确的是()A.代数式是分式 B.分式中,都扩大3倍,分式的值不变C.分式有意义 D.分式是最简分式7.下列各组数中,以它们为边的三角形不是直角三角形的是()A.3,4,5 B.5,12,13 C.7,24,25 D.5,7,98.在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水的标志,在下列这些示意图标中,是轴对称图形的是()A. B. C. D.9.一汽艇保持发动机的功率不变,它在相距30千米的两码头之间流动的河水中往返一次(其中汽艇的速度大于河水流动的速度)所用的时间是t1,它在平静的河水中行驶60千米所用的时间是t2,则t1与t2的关系是()A.t1>t2 B.t1<t2 C.t1=t2 D.以上均有可能10.在分式,,,中,最简分式有()A.个 B.个 C.个 D.个二、填空题(每小题3分,共24分)11.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.12.如图,将沿着对折,点落到处,若,则__________.13.如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD=_____°.14.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.15.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是____________16.如图,,若,则的度数是__________.17.3.145精确到百分位的近似数是____.18.如图,正方形ABCD,以CD为边向正方形内作等边△DEC,则∠EAB=______________º.三、解答题(共66分)19.(10分)若关于x的分式方程=1的解为正数,求m的取值范围.20.(6分)如图,中,,,,若动点从点开始,按的路径运动,且速度为每秒,设出发的时间为秒.(1)出发2秒后,求的周长.(2)问为何值时,为等腰三角形?(3)另有一点,从点开始,按的路径运动,且速度为每秒,若、两点同时出发,当、中有一点到达终点时,另一点也停止运动.当为何值时,直线把的周长分成的两部分?21.(6分)某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①CF与BC的位置关系为;②CF,DC,BC之间的数量关系为(直接写出结论);(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.22.(8分)如图,在中,平分交于点,,垂足为,且.若记,(不妨设),求的大小(用含的代数式表示).23.(8分)如图,直线的解析表达式为,且与轴交于点.直线经过点,直线交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)在轴上求作一点,使的和最小,直接写出的坐标.24.(8分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.25.(10分)如图,在平面直角坐标系中:(1)画出关于轴对称的图形;(2)在轴上找一点,使得点P到点、点的距离之和最小,则的坐标是______________.26.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;并写出B点坐标;(2)请作出△ABC关于y轴对称的△A'B'C';(3)请作出将△ABC向下平移的3个单位,再向右平移5个单位后的△A1B1C1;则点A1的坐标为_____;点B1的坐标为______,
参考答案一、选择题(每小题3分,共30分)1、B【分析】分类讨论与的大小,列出分式方程,解方程即可.【详解】解:当时,x<0,方程变形为,去分母得:2=3-x,
解得:x=1(不符合题意,舍去);
当,,x>0,方程变形得:,去分母得:1=3-x,
解得:x=2,
经检验x=2是分式方程的解,
故选:B.【点睛】此题考查了解分式方程,分类讨论是解本题的关键.2、B【分析】根据分式有意义的条件,分别进行判断,即可得到答案.【详解】解:A、当时,无意义,故A错误;B、∵,则总有意义,故B正确;C、当时,无意义,故C错误;D、当时,无意义,故D错误;故选:B.【点睛】本题考查了分式有意义的条件,分式无意义的条件,解题的关键是熟练掌握分母不等于0,则分式有意义.3、D【解析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、不是轴对称图形,此项不符题意D、是轴对称图形,此项符合题意故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.4、C【分析】根据和都是等腰直角三角形,得,,,从而通过推导证明,得;再结合三角形内角和的性质,通过计算即可得到答案.【详解】∵和都是等腰直角三角形∴,,∴∴∴∴∴∴故选:C.【点睛】本题考查了等腰直角三角形、全等三角形、三角形内角和的知识;解题的关键是熟练掌握等腰直角三角形、全等三角形、三角形内角和的性质,从而完成求解.5、D【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵52+122=169=132,∴能构成直角三角形,故本选项错误;B、∵12+12=2=()2,∴能构成直角三角形,故本选项错误;C、∵12+22=5=()2,∴能够构成直角三角形,故本选项错误;D、∵()2+22=7≠()2,∴不能构成直角三角形,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.6、D【解析】根据分式的定义及性质依次判断即可求解.【详解】A.代数式是整式,故错误;B.分式中,都扩大3倍后为,分式的值扩大3倍,故错误;C.当x=±1时,分式无意义,故错误;D.分式是最简分式,正确,故选D.【点睛】此题主要考查分式的定义及性质,解题的关键是熟知分式的特点与性质.7、D【分析】欲判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.【详解】A、,能构成直角三角形,不符合题意;
B、,能构成直角三角形,不符合题意;
C、,能构成直角三角形,不符合题意;
D、,不能构成直角三角形,符合题意.
故选:D.【点睛】本题主要考查了勾股定理的逆定理:已知△ABC的三边满足,则△ABC是直角三角形.8、B【分析】根据轴对称图形的定义即可解答.【详解】根据轴对称图形的定义可知:选项A不是轴对称图形;选项B是轴对称图形;选项C不是轴对称图形;选项D不是轴对称图形.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、A【分析】设汽艇在静水中的速度为a千米/小时,水速为b千米/小时,根据题意列出算式,然后再比较大小即可.【详解】汽艇在静水中所用时间t1.汽艇在河水中所用时间t1.∵t1-t1=0,∴,∴t1>t1.故选A.【点睛】本题考查了分式的减法,根据题意列出汽艇在静水中和河水中所用时间的代数式是解题的关键.10、B【分析】利用最简分式的定义判断即可得到结果.【详解】=,,则最简分式有2个,故选:B.【点睛】此题考查了最简分式,熟练掌握最简分式的定义是解本题的关键.二、填空题(每小题3分,共24分)11、150cm【解析】试题解析:如图,彩色丝带的总长度为=150cm.
12、【解析】根据折叠的性质得到∠A′DE=∠ADE,∠A′ED=∠AED,由平角的定义得到∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,根据已知条件得到∠ADE+∠AED=145°,由三角形的内角和即可得到结论.【详解】∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED=145°,∴∠A=35°.故答案为35°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.13、36【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,又∵BC=BD,∴∠BDC=∠BCD=72°,∴∠DBC=36°,∴∠ABD=∠ABC﹣∠DBC=72°﹣36°=36°,故答案为36【点睛】本题考查等腰三角形的性质.14、1【解析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.15、或【分析】根据等腰三角形的性质和可得,,根据特殊三角函数值即可求出,即可求出这个等腰三角形的底角度数.【详解】根据题意,作如下等腰三角形,AB、AC为腰,,①顶角是锐角∵,∴,∵∴∴∴∴②顶角是钝角∵,∴,∵∴∴∴∴故答案为:或.【点睛】本题考查了等腰三角形的度数问题,掌握等腰三角形的性质、特殊三角函数值是解题的关键.16、【分析】根据平行线的性质得出,然后利用互补即可求出的度数.【详解】∵故答案为:.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.17、3.1.【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【详解】解:3.145≈3.1(精确到百分位).
故答案为3.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.18、15.【解析】根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出∠DAE,从而可得∠EAB的度数.【详解】∵正方形ABCD,∴AD=CD,∠ADC=∠DAB=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°-60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°-∠ADE)=75°;∴∠EAB=90°-75°=15°.故答案为:15°【点睛】本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.三、解答题(共66分)19、m>2且m≠1.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【详解】解:去分母得:m﹣1=x﹣1,解得:x=m﹣2,由分式方程的解为正数,得到m﹣2>0,且m﹣2≠1,解得:m>2且m≠1,故答案为:m>2且m≠1.【点睛】本题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解题的关键.20、(1)cm;(2)当为3秒、5.4秒、6秒、6.5秒时,为等腰三角形;(3)或或秒【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长;(2)分点P在边AC上和点P在边AB上两种情况求解即可;(3)分类讨论:①当点在上,在上;②当点在上,在上;③当点在上,在上.【详解】解:(1)如图1,由,,,∴,动点从点开始,按的路径运动,且速度为每秒,∴出发2秒后,则,∴AP=2,∵,∴,∴的周长为:.(2)①如图2,若在边上时,,此时用的时间为,为等腰三角形;②2若在边上时,有三种情况:(ⅰ)如图3,若使,此时,运动的路程为,所以用的时间为,为等腰三角形;(ⅱ)如图4,若,作于点,∵,∴CD=,在中,,所以,所以运动的路程为,则用的时间为,为等腰三角形;(ⅲ)如图5,若,此时应该为斜边的中点,运动的路程为,则所用的时间为,为等腰三角形;综上所述,当为、、、时,为等腰三角形;(3)①3÷2=1.5秒,如图6,当点在上,在上,则,,∵直线把的周长分成的两部分,∴,∴,符合题意;②(3+5)÷2=4秒,如图7,当点在上,在上,则,,∵直线把的周长分成的两部分,∴,,符合题意;③12÷2=6秒,当点在上,在上,则,,∵直线把的周长分成的两部分,(ⅰ)当AP+AQ=周长的时,如图8,∴,,符合题意;(ⅱ)当AP+AQ=周长的时,如图9,∴,∴;∵当秒时,点到达点停止运动,∴这种情况应该舍去.综上,当为或或秒时,直线把的周长分成的两部分.【点睛】此题考查了等腰三角形的判定与性质,等积法求线段的长,勾股定理,以及分类讨论的数学思想,对(2)、(3)小题分类讨论是解答本题的关键.21、(1)①垂直;②BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由见解析;(3)CE=3.【分析】(1)①由∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)由∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示,想办法证明△ADH≌△DEM(AAS),推出EM=DH=3,DM=AH=2,推出CM=EM=3,即可解决问题.【详解】解:(1)①等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:垂直,BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由如下:∵等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示:∵∠BAC=90°,AB=AC=2,∴BC=AB=4,AH=BH=CH=BC=2,∴CD=BC=1,∴DH=CH+CD=3,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM(AAS),∴EM=DH=3,DM=AH=2,∴CM=EM=3,∴CE==3.【点睛】本题考查几何变换综合题,全等三角形的判定和性质,余角的性质,勾股定理,等腰直角三角形的判定和性质,矩形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.22、∠CFE=().【分析】利用角平分线和两角互余的性质求出∠DAE,再利用平行线的性质解决问题即可.【详解】∵∠BAC=180°-∠B-∠ACB=180°-,AD平分∠BAC,
∴∠CAD=∠BAC=90°,
∵AE⊥BC,
∴∠AEC=90°,∴∠EAC=90°,∴∠DAE=∠CAD∠EAC=90°,
∵AD∥CF,
∴∠CFE=∠DAE=.【点睛】本题考查三角形内角和定理,角平分线的定义,平行线的性质等知识,解题的关键是熟练掌握基本知识.23、(1)D(1,0);(2)y=x−6;(3)(,0).【解析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,代入A、B坐标求出k,b的值即可;(3)作点B关于x轴的对称点B’,连接B’C交x轴于M,则点M即为所求,联立解析式可求出点C坐标,然后求出直线B’C的解析式,令y=0求出x的值即可.【详解】解:(1)由y=−3x+3,令y=0,得−3x+3=0,解得:x=1,∴D(1,0);(2)设直线l2的表达式为y=kx+b,由图象知:A(4,0),B(3,),代入表达式y=kx+b,得,解得:∴直线l2的解析表达式为y=x−6;(3)作点B关于x轴的对称点B’,则B’的坐标的为(3,),连接B’C交x轴于M,则点M即为所求,联立,解得:,∴C(2,-3),设直线B’C的解析式为:y=mx+n,代入B’(3,),C(2,-3),得,解得:,∴直线B’C的解析式为:y=x−12,令y=0,即x−12=0,解得:,∴的坐标为(,0).【点睛】此题主要考查了求一次函数图象的交点、待定系数法求一次函数解析式以及轴对称求最短路径问题,关键是掌握两函数图象相交,交点坐标就是两函数解析式组成的方程组的解.24、(1)BF=AC,理由见解析;(2)NE=AC,理由见解析.【分析】(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水库建设项目的最佳实施方案
- 2025至2031年中国空心阳光板行业投资前景及策略咨询研究报告
- 2025至2030年中国龙虾片数据监测研究报告
- 2025至2030年中国饲用沸石粉数据监测研究报告
- 2025年座钻项目可行性研究报告
- 2025至2030年中国掌上型多通道汽车发动机示波仪数据监测研究报告
- 2025至2030年中国工作台面数据监测研究报告
- 2025年中国耐火浇筑料市场调查研究报告
- 2025年度私募股权投资私下分配及风险管理协议
- 儿童游乐设备材料创新应用考核试卷
- 2024版2024年《咚咚锵》中班音乐教案
- DB61∕T 1854-2024 生态保护红线评估调整技术规范
- GA 2139-2024警用防暴臂盾
- DL∕T 5810-2020 电化学储能电站接入电网设计规范
- 北京三甲中医疼痛科合作方案
- QCT957-2023洗扫车技术规范
- 新外研版高中英语选择性必修1单词正序英汉互译默写本
- 自愿断绝父子关系协议书电子版
- 2023年4月自考00504艺术概论试题及答案含解析
- 美丽的大自然(教案)2023-2024学年美术一年级下册
- 成都特色民俗课件
评论
0/150
提交评论