版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n22.满足下列条件的三角形中,不是直角三角形的是有()A.三内角之比为3:4:5 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角比为1:2:33.下列图形中,不一定是轴对称图形的是()A.正方形 B.等腰三角形 C.直角三角形 D.圆4.下列说法正确的是()A.一个命题一定有逆命题 B.一个定理一定有逆定理C.真命题的逆命题一定是真命题 D.假命题的逆命题一定是假命题5.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.8,15,17 B.4,6,8 C.3,4,5 D.6,8,106.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1次 B.2次 C.3次 D.4次7.下列二次根式中,是最简二次根式的是()A. B. C. D.8.如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE,当BD+BE的值最小时,则H点的坐标为()A.(0,4) B.(0,5) C.(0,) D.(0,)9.实数是()A.整数 B.分数 C.有理数 D.无理数10.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分 D.CD平分∠ACB11.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;②三角形的一个外角大于任何一个内角;③如果和是对顶角,那么;④若,则.A.1个 B.2个 C.3个 D.4个12.到三角形三边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点二、填空题(每题4分,共24分)13.如图,在中,,,以为圆心,任意长为半径画弧分别交、于点和,再分别以、为圆心,大于的长为半径画弧,两弧交于点,连结并延长交于点,则下列说法①是的平分线;②;③点在的中垂线上;正确的个数是______个.14.若函数为常数)与函数为常数)的图像的交点坐标是(2,1),则关于、的二元一次方程组的解是________.15.下列式子按一定规律排列,,,……则第2017个式子是________.16.若(x+m)(x+3)中不含x的一次项,则m的值为__.17.的立方根为______.18.已知实数,0.16,,,其中为无理数的是_________.三、解答题(共78分)19.(8分)如图,是由三个等边三角形组成的图形,请仅用无刻度的直尺按要求画图.(1)在图①中画出一个直角三角形,使得AB为三角形的一条边;(2)在图②中画出AD的垂直平分线.(1)(2)20.(8分)如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC于点G.
(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.21.(8分)因式分解:22.(10分)如图,,点、分别在、上运动(不与点重合).(1)如图1,是的平分线,的反方向延长线与的平分线交于点.①若,则为多少度?请说明理由.②猜想:的度数是否随、的移动发生变化?请说明理由.(2)如图2,若,,则的大小为度(直接写出结果);(3)若将“”改为“()”,且,,其余条件不变,则的大小为度(用含、的代数式直接表示出米).23.(10分)某超市用3000元购进某种干果销售,由于销售状况良好,很快售完.超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果的数量是第一次的2倍还多300千克,如果超市此时按每千克9元的价格出售,当大部分干果售出后,余下的100千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市第二次销售该种干果盈利了多少元?24.(10分)A,B两地相距80km,甲、乙两人骑车同时分别从A,B两地相向而行,假设他们都保持匀速行驶,则他们各自到A地的距离s(km)都是骑车时间t(h)的一次函数,如图所示.(1)求乙的s乙与t之间的解析式;(2)经过多长时间甲乙两人相距10km?25.(12分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?26.如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(2,3)、B(﹣1,2),将△ABC平移得到△A′B′C′,使得点A的对应点A′,请解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.2、A【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【详解】A、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为45°,60°,75°,故此三角形不是直角三角形;B、三边符合勾股定理的逆定理,所以是直角三角形;C、设三条边为,则有,符合勾股定理的逆定理,所以是直角三角形;D、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为30°,60°,90°,所以此三角形是直角三角形;故选:A.【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C4、A【分析】命题由题设和结论两部分组成,所以所有的命题都有逆命题,但是所有的定理不一定有逆定理,真命题的逆命题不一定是真命题,假命题的逆命题不一定是假命题.【详解】解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、假命题的逆命题不一定是假命题,故本选项错误.故选A.【点睛】本题考查命题的概念,以及逆命题,逆定理的概念和真假命题的概念等.5、B【解析】试题解析:A.
故是直角三角形,故错误;B.
故不是直角三角形,正确;C.
故是直角三角形,故错误;D.
故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.6、C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q在BC上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t,∴t=0,此时两点没有运动,∴点Q以后在BC上的每次运动都会有PD=QB,∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选C.【点睛】本题考查列了矩形的性质和平行线的性质.解决本题的关键是理解以P、D、Q、B四点组成平出四边形的次数就是Q在BC上往返运动的次数.7、C【分析】化简得到结果,即可做出判断.【详解】A.,故不是最简二次根式;B.,故不是最简二次根式;C.是最简二次根式;D.,故不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.8、A【分析】作EF⊥BC于F,设AD=EC=x.利用勾股定理可得BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到G(,3),K(,)的距离之和最小.【详解】解:由题意A(0,),B(-3,0),C(3,0),∴AB=AC=8,作EF⊥BC于F,设AD=EC=x.∵EF∥AO,∴,∴EF=,CF=,∵OH∥EF,∴,∴OH=,∴BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到K(,3),G(,)的距离之和最小.设G关于x轴的对称点G′(,),直线G′K的解析式为y=kx+b,则有,解得k=,b=,∴直线G′K的解析式为y=x,当y=0时,x=,∴当x=时,MG+MK的值最小,此时OH===4,∴当BD+BE的值最小时,则H点的坐标为(0,4),故选A.【点睛】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.9、D【解析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,即可判定.【详解】由题意,得是无理数,故选:D.【点睛】此题主要考查对无理数的理解,熟练掌握,即可解题.10、A【分析】由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.【详解】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB是CD的垂直平分线.即AB垂直平分CD.故选A.【点睛】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.11、A【分析】逐一对选项进行分析即可.【详解】①两条直线被第三条直线所截,内错角不一定相等,故错误;②三角形的一个外角大于任何与它不相邻的两个内角,故错误;③如果和是对顶角,那么,故正确;④若,则或,故错误.所以只有一个真命题.故选:A.【点睛】本题主要考查真假命题,会判断命题的真假是解题的关键.12、D【分析】直接利用三角形的内心性质进行判断.【详解】到三角形三边的距离都相等的点是这个三角形的内心,即三个内角平分线的交点.
故选:D.【点睛】本题考查了角平分线的性质:角平分线的性质:角的平分线上的点到角的两边的距离相等.二、填空题(每题4分,共24分)13、1【分析】根据角平分线的做法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确.【详解】解:①根据角平分线的做法可得AD是∠BAC的平分线,说法①正确;
②∵∠C=90°,∠B=10°,
∴∠CAB=60°,
∵AD平分∠CAB,
∴∠DAB=10°,
∴∠ADC=10°+10°=60°,
因此∠ADC=60°正确;
③∵∠DAB=10°,∠B=10°,
∴AD=BD,
∴点D在AB的中垂线上,故③说法正确,
故答案为:1.【点睛】此题主要考查了角平分线的做法以及垂直平分线的判定,熟练根据角平分线的性质得出∠ADC度数是解题关键.14、【解析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图像的交点坐标是(2,1),所以方程组的解为.故答案为.【点睛】本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.15、【解析】试题分析:根据题目中给出的数据可得:分母为2n,分子中a的指数为2n-1,则第2017个式子是.16、-1【分析】把式子展开,找到x的一次项的所有系数,令其为2,可求出m的值.【详解】解:∵(x+m)(x+1)=x2+(m+1)x+1m,又∵结果中不含x的一次项,∴m+1=2,解得m=-1.【点睛】本题主要考查了多项式乘多项式的运算,注意当多项式中不含有哪一项时,即这一项的系数为2.17、【解析】根据立方根的定义求解可得.【详解】解:,的立方根为,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.18、【分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,即可判定.【详解】由已知,得其中为无理数的是,故答案为.【点睛】此题主要考查对无理数的理解,熟知概念,即可解题.三、解答题(共78分)19、(1)答案见解析;(2)答案见解析【分析】(1)四边形ACED和四边形ABCD都是菱形,对角线AC⊥AE,根据AB∥CD,可证得AB⊥AE,问题可解;(2)四边形ABCD是等腰梯形,是轴对称图形.对角线AC和BD关于对称轴对称,所以其交点F必在对称轴上,又因为BE的中点C也在对称轴上,经过点F,C画直线问题可解.【详解】解:(1)如图①,连接AE,则△ABE即为所求作的直角三角形;(2)如图②,连接AE、BD交于点F,过点C、F画直线CF,则直线CF即为AD的垂直平分线.
【点睛】本题考查作图-复杂作图,菱形的性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)见解析;(2)18cm【分析】(1)连接BE、EC,只要证明Rt△BFE≌Rt△CGE,得BF=CG,再证明Rt△AFE≌Rt△AGE得:AF=AG,根据线段和差定义即可解决.(2由AG=5cm可得AB+AC=10cm即可得出△ABC的周长.【详解】(1)延长AB至点M,过点E作EF⊥BM于点F∵AE平分∠BACEG⊥AC于点G∴EG=EF,∠EFB=∠EGC=90°连接BE,EC∵点D是BC的中点,DE⊥BC∴BE=EC在Rt△BFE与Rt△CGE中∴Rt△BFE≌Rt△CGE(HL)∴BF=GC∵AB+AC=AB+AG+GC∴AB+AC=AB+BF+AG=AF+AG在Rt△AFE与Rt△AGE中∴Rt△AFE≌Rt△AGE(HL)∴AF=AG∴AB+AC=2AG(2)∵AG=5cm,AB+AC=2AG∴AB+AC=10cm又∵BC=8cm∴△ABC的周长为AB+AC+BC=8+10=18cm.【点睛】本题考查角平分线的性质定理、全等三角形的判定和性质、线段垂直平分线的性质等知识,解题的关键是添加辅助线构造全等三角形,需要熟练掌握全等三角形的判定,属于中考常考题型.21、【分析】先提公因式,然后利用完全平方公式进行分解因式,即可得到答案.【详解】解:==;【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22、(1)①45°,理由见解析;②∠D的度数不变;理由见解析(2)30;(3)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=+β,由∠D=∠ABC-∠BAD得出答案.【详解】解:(1)①45°∵∠BAO=60°,∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°∴∠D=∠CBA-∠BAD=45°,②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α,
∵∠BAD=∠BAO,
∴∠BAO=3α,
∵∠AOB=90°,
∴∠ABN=∠AOB+∠BAO=90°+3α,
∵∠ABC=∠ABN,
∴∠ABC=30°+α,
∴∠D=∠ABC-∠BAD=30°+α-α=30°;(3)设∠BAD=β,
∵∠BAD=∠BAO,
∴∠BAO=nβ,
∵∠AOB=α°,
∴∠ABN=∠AOB+∠BAO=α+nβ,
∵∠ABC=∠ABN,
∴∠ABC=+β,
∴∠D=∠ABC-∠BAD=+β-β=.【点睛】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.23、(1)该种干果的第一次进价是每千克5元;(3)超市第二次销售该种干果盈利了4320元.【分析】(1)设该种干果的第一次进价是每千克元,则第二次的进价为,再根据题中“购进干果的数量是第一次的2倍还多300千克”可列出关于x的分式方程,求解即可;(2)结合(1)得第二次购进干果的数量为,表示出第二次的销售总价,再减去第二次的进价即可.【详解】解:(1)设该种干果的第一次进价是每千克元,根据题意,得.解得:.经检验:是原方程的解.答:该种干果的第一次进价是每千克5元.(2)答:超市第二次销售该种干果盈利了4320元.【点睛】本题考查了分式方程的应用,正确理解题意,把握题中等量关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度产品技术信息保密协议版B版
- 2024年专业场地平整工程劳务服务协议版B版
- 第一次当老师心得体会-第一次当老师总结
- 2024年度企业节能减排技术服务合同
- 2024年店铺合资经营协议版B版
- 2024年度健身服务与管理合同详细条款2篇
- 2024工装承包合同范本
- 2024实习生工作准则协议版
- 2024年家居装修项目二次承包协议模板版B版
- 2024专业技术服务合作合同范本版B版
- 物联网技术与应用专业开设可行性分析报告
- 椎管内肿瘤任静
- PICC静脉血栓护理查房
- 注塑领班年终总结 注塑领班年终总结(十三篇)
- 土方回填单元工程评定表
- 2023年海南普通高中学业水平选择性考试化学真题及答案
- 【基于GONE理论的企业财务舞弊研究文献综述3300字】
- 2023年度安全生产费用使用台账
- 化学危险品的危害及防护有关例文10篇
- 学校安全风险评价指标体系
- 2023年教师面试招聘评分表
评论
0/150
提交评论