版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市天府七中学2024年中考试题猜想数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B. C. D.2.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③ B.①②④ C.②③④ D.③④⑤3.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A. B. C. D.4.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.5.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.6.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)7.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A.或 B.或C.或 D.或8.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(
)A.
B.C.
D.9.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A. B. C. D.10.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A.2m B.m C.3m D.6m二、填空题(共7小题,每小题3分,满分21分)11.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________12.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.13.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.14.因式分解:=_______________.15.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D.16.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.17.不等式5﹣2x<1的解集为_____.三、解答题(共7小题,满分69分)18.(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.19.(5分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是.(2)当t=时,原函数为y=x2﹣2x①图象G所对应的函数值y随x的增大而减小时,x的取值范围是.②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.20.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)21.(10分)解分式方程:x+1x-1-22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(12分)已知关于x的一元二次方程为常数.求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值.24.(14分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN∧的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故选:C.2、C【解析】
根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>时,y随着x的增大而增大,故⑤错误;故选:C.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.3、C【解析】
根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y==,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.4、D【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.5、D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.6、C【解析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.7、B【解析】
根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,∴使成立的取值范围是或,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.8、D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.9、D【解析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.10、C【解析】
依据题意,三根木条的长度分别为xm,xm,(10-2x)m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为xm,xm,(10-2x)m,∵三根木条要组成三角形,∴x-x<10-2x<x+x,解得:.故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.二、填空题(共7小题,每小题3分,满分21分)11、17【解析】过点B作EF⊥l2,交l1于E,交l1于F,如图,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB⋅BC=AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解.12、1【解析】
连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积,再求出△OCE的面积为2,即可得出k的值.【详解】连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=1,∵BE=2EC,∴△OCE的面积=△OBE的面积=2,∴k=1.故答案为:1.【点睛】本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.13、150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.14、a(a+b)(a-b).【解析】分析:本题考查的是提公因式法和利用平方差公式分解因式.解析:原式=a(a+b)(a-b).故答案为a(a+b)(a-b).15、B【解析】
过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=三角形ABC的面积=cm1,选项中只有B的长方形面积为cm1,故选B.16、1【解析】试题解析:∵总人数为14÷28%=50(人),∴该年级足球测试成绩为D等的人数为(人).故答案为:1.17、x>1.【解析】
根据不等式的解法解答.【详解】解:,.故答案为【点睛】此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.三、解答题(共7小题,满分69分)18、(1),;(2)P,.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,-1).设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,∴直线AD的解析式为y=-2x+1.令y=-2x+1中y=0,则-2x+1=0,解得:x=,∴点P的坐标为(,0).S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.19、(1)(2,0);(2)①﹣≤x≤1或x≥;②图象G所对应的函数有最大值为;(3)①;②n≤或n≥.【解析】
(1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;(2)画出函数草图,求出翻转点和函数顶点的坐标,①根据图象的增减性可求出y随x的增大而减小时,x的取值范围,②根据图象很容易计算出函数最大值;(3)①将n=﹣1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.②画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.【详解】(1)当x=时,y=,当x≥时,翻折后函数的表达式为:y=﹣x+b,将点(,)坐标代入上式并解得:翻折后函数的表达式为:y=﹣x+2,当y=0时,x=2,即函数与x轴交点坐标为:(2,0);同理沿x=﹣翻折后当时函数的表达式为:y=﹣x,函数与x轴交点坐标为:(0,0),因为所以舍去.故答案为:(2,0);(2)当t=时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:点A、B分别是t=﹣、t=的两个翻折点,点C是抛物线原顶点,则点A、B、C的横坐标分别为﹣、1、,①函数值y随x的增大而减小时,﹣≤x≤1或x≥,故答案为:﹣≤x≤1或x≥;②函数在点A处取得最大值,x=﹣,y=(﹣)2﹣2×(﹣)=,答:图象G所对应的函数有最大值为;(3)n=﹣1时,y=x2+2x﹣2,①参考(2)中的图象知:当y=2时,y=x2+2x﹣2=2,解得:x=﹣1±,若图象G与直线y=2恰好有两个交点,则t>﹣1且-t>,所以;②函数的对称轴为:x=n,令y=x2﹣2nx+n2﹣3=0,则x=n±,当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,当x=n在y轴左侧时,(n≤0),此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,则函数在AB段和点C右侧,故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,解得:n≤;当x=n在y轴右侧时,(n≥0),同理可得:n≥;综上:n≤或n≥.【点睛】在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.20、B、C两地的距离大约是6千米.【解析】
过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【详解】解:过B作于点D.在中,千米,中,,千米,千米.答:B、C两地的距离大约是6千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.21、方程无解【解析】
找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.【详解】解:方程的两边同乘(x+1)(x−1),得:x+12x2x2∴此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.22、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.【解析】
(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肛门癌病因介绍
- 肝炎双重感染病因介绍
- 《财务管理筹资方式》课件
- 六年级上册英语期中测试卷(3)-1小学英语教学教材课件
- 文书模板-《旅行社年终总结工作预案》
- 物流管理基础课件 情境3子情境2 供应链管理
- 男性特纳综合征病因介绍
- 溃疡性口炎病因介绍
- 复分解反应课件
- (高考英语作文炼句)第1篇译文老师笔记
- 大学生劳动教育概论智慧树知到课后章节答案2023年下南昌大学
- 集中供热企业供需现状与发展战略规划
- 2023-2024学年江门市新会区六上数学期末考试试题含答案
- 第六单元名著导读《简-爱》一等奖创新教学设计-1
- 广东广州2020年中考语文现代文阅读真题
- 体检中心运用PDCA降低体检中心体检者漏检率品管圈成果汇报书
- 物业安全检查记录表资料
- ASME B16.5标准法兰尺寸表
- 护理操作并发症
- 周海东个人材料
- 乌鲁木齐市地铁空气源热泵节能改造可行性方案
评论
0/150
提交评论