2023届河北省石家庄市藁城区数学八上期末经典模拟试题含解析_第1页
2023届河北省石家庄市藁城区数学八上期末经典模拟试题含解析_第2页
2023届河北省石家庄市藁城区数学八上期末经典模拟试题含解析_第3页
2023届河北省石家庄市藁城区数学八上期末经典模拟试题含解析_第4页
2023届河北省石家庄市藁城区数学八上期末经典模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列图形:线段、角、三角形、四边形,等边三角形、等腰三角形、正五边形、正六边形中,是轴对称图形的有()个A.5 B.6 C.7 D.82.下列计算中,正确的是()A. B.C. D.3.图是一个长为宽为的长方形,用剪刀沿它的所有对称轴剪开,把它分成四块,然后按图那样拼成一个正方形,则中间阴影部分的面积是()A. B.C. D.4.下列图案是轴对称图形的是()A. B. C. D.5.已知点在第四象限,且点P到x轴的距离为3,到y轴的距离为6,则点P的坐标是()A. B. C. D.或6.人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为()A.7.7×10﹣6 B.7.7×10﹣5 C.0.77×10﹣6 D.0.77×10﹣57.已知a,b,c是△ABC的三条边,满足下列条件的△ABC中,不是直角三角形的是()A. B.∠A:∠B:∠C=3:4:5 C.∠C=∠A-∠B D.a:b:c=5:12:138.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.39.下列各式运算正确的是()A. B. C. D.10.若点A(3,y1),B(1,y2)都在直线y=-x+2上,则y1与y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.无法比较大小11.若实数m、n满足等式,且m、n恰好是等腰的两条边的边长,则的周长()A.12 B.10 C.8 D.612.活动课上,小华将两张直角三角形纸片如图放置,已知AC=8,O是AC的中点,△ABO与△CDO的面积之比为4:3,则两纸片重叠部分即△OBC的面积为()A.4 B.6 C.2 D.2二、填空题(每题4分,共24分)13.在△ABC中,∠A=60°,∠B=∠C,则∠B=______.14.若,则__________(填“”“”或“”)15.已知和一点,,,,则______.16.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_______度.17.如图,在中,的中垂线与的角平分线交于点,则四边形的面积为____________18.要使分式有意义,则x的取值范围是_______________.三、解答题(共78分)19.(8分)如图1,已知中内部的射线与的外角的平分线相交于点.若.(1)求证:平分;(2)如图2,点是射线上一点,垂直平分于点,于点,连接,若,求.20.(8分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.21.(8分)我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?22.(10分)用分式方程解决问题:元旦假期有两个小组去攀登--座高h米的山,第二组的攀登速度是第--组的a倍.(1)若,两小组同时开始攀登,结果第二组比第一组早到达顶峰.求两个小组的攀登速度.(2)若第二组比第一组晚出发,结果两组同时到达顶峰,求第二组的攀登速度比第一组快多少?(用含的代数式表示)23.(10分)解不等式组并把它的解集在数轴上表示出来.24.(10分)因式分解:(1).(2).25.(12分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.26.已知是等边三角形,点是直线上一点,以为一边在的右侧作等边.(1)如图①,点在线段上移动时,直接写出和的大小关系;(2)如图②,点在线段的延长线上移动时,猜想的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称图形的定义判断即可.【详解】∵轴对称图形是:线段、角、等边三角形、等腰三角形、正五边形、正六边形共6个;故答案为:B.【点睛】本题考查了轴对称图形的定义,熟练掌握其定义是解题的关键.2、C【详解】选项A,;选项B,;选项C,;选项D,,必须满足a-2≠0.故选C.3、D【分析】根据图形列出算式,再进行化简即可.【详解】阴影部分的面积S=(a+b)2−2a•2b=a2+2ab+b2−4ab=(a−b)2,故选:D.【点睛】本题考查了完全平方公式的应用,能根据图形列出算式是解此题的关键.4、C【分析】根据轴对称图形的性质,分别进行判断,即可得到答案.【详解】解:根据题意,A、B、D中的图形不是轴对称图形,C是轴对称图形;故选:C.【点睛】本题考查了轴对称图形的定义,解题的关键是熟记定义.5、B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000077=7.7×10﹣1.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【分析】解答此题时根据直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形,分别判定即可.【详解】解:A、∵b2=c2-a2,

∴c2=b2+a2,∴△ABC是直角三角形

故本选项不符合题意;B、∵∠A+∠B+∠C=180°,∠A:∠B:∠C=3:4:5,∴最大角∠C=×180°=75°,此三角形不是直角三角形,本选项符合题意;C、∵∠C=∠A-∠B,

∴∠C+∠B=∠A,

∴∠A=90°,

∴△ABC是直角三角形,

故本选项不符合题意;

D、∵a:b:c=12:13:5,

∴a2+c2=b2,

∴△ABC是直角三角形,故本选项不符合题意;故选:B.【点睛】本题考查了直角三角形的判定方法、勾股定理的逆定理和三角形的内角和定理,能理解勾股定理的逆定理的内容是解此题的关键.8、B【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【详解】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点睛】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.9、D【分析】计算出各个选项中式子的正确结果,然后对照即可得到哪个选项是正确的.【详解】解:∵,故选项A错误;∵,故选项B错误;∵,故选项C错误;∵,故选项D正确;故选D.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.10、C【分析】分别把点A和点B代入直线,求出、的值,再比较出其大小即可.【详解】解:分别把点A和点B代入直线,,,∵>,∴>,故选:C.【点睛】本题主要考察了比较一次函数值的大小,正确求出A、B两点的纵坐标是解题的关键.11、B【分析】先根据绝对值的非负性、二次根式的非负性求出m、n的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得.【详解】由题意得:,解得,设等腰的第三边长为a,恰好是等腰的两条边的边长,,即,又是等腰三角形,,则的周长为,故选:B.【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.12、D【分析】先根据直角三角形的性质可求出OB、OC、OA的长、以及的面积等于的面积,再根据题中两三角形的面积比可得OD的长,然后由勾股定理可得CD的长,最后根据三角形的面积公式可得出答案.【详解】在中,,O是AC的中点的面积等于的面积与的面积之比为与的面积之比为又,即在中,故选:D.【点睛】本题考查了直角三角形的性质(斜边上的中线等于斜边的一半)、勾股定理等知识点,根据已知的面积之比求出OD的长是解题关键.二、填空题(每题4分,共24分)13、60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.14、【分析】根据不等式的性质先比较出的大小,然后利用不等式的性质即可得出答案.【详解】∵故答案为:.【点睛】本题主要考查不等式的性质,掌握不等式的性质,尤其是不等式的两边都乘以一个负数时,不等号的方向改变是解题的关键.15、40或80【分析】分两种情形:当点O在△ABC内部时或外部时分别求解.【详解】如图,当点O在△ABC内部时,

∵OA=OB=OC,,,

∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,

∴∠AOC=∠1+∠2=∠OAB+∠OBA+∠OBC+∠OCB=100°,∴∠OCA==40°;

如图,当点O在△ABC外部时,

∵OA=OB=OC,,,

∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,

∴∠AOC=∠DOC-∠DOA=∠OBC+∠OCB-(∠OAB+∠OBA),∴∠OCA==80°.故答案为:40或80.【点睛】本题考查了等腰三角形的性质,三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题.16、15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.17、【分析】过点E作EG⊥AB交射线AB于G,作EH⊥AC于H,根据矩形的定义可得四边形AGEH为矩形,然后根据角平分线的性质可得EG=EH,从而证出四边形AGEH为正方形,可得AG=AH,然后利用HL证出Rt△EGB≌Rt△EHC,从而得出BG=HC,列出方程即可求出AG,然后根据S四边形ABEC=S四边形ABEH+S△EHC即可证出S四边形ABEC=S正方形AGEH,最后根据正方形的面积公式求面积即可.【详解】解:过点E作EG⊥AB交射线AB于G,作EH⊥AC于H∴∠AGE=∠GAH=∠AHE=90°∴四边形AGEH为矩形∵AF平分∠BAC∴EG=EH∴四边形AGEH为正方形∴AG=AH∵DE垂直平分BC∴EB=EC在Rt△EGB和Rt△EHC中∴Rt△EGB≌Rt△EHC∴BG=HC∴AG-AB=AC-AH∴AG-3=4-AG解得AG=∴S四边形ABEC=S四边形ABEH+S△EHC=S四边形ABEH+S△EGB=S正方形AGEH=AG2=故答案为:.【点睛】此题考查的是正方形的判定及性质、角平分线的性质、垂直平分线的性质、全等三角形的判定及性质和正方形的面积公式,掌握正方形的判定及性质、角平分线的性质、垂直平分线的性质、全等三角形的判定及性质和正方形的面积公式是解决此题的关键.18、【解析】根据分式有意义的条件,则:解得:故答案为【点睛】分式有意义的条件:分母不为零.三、解答题(共78分)19、(1)详见解析;(2)1.【分析】(1)根据角平分线的定义和三角形的外角性质进行计算和代换即可.(2)连接,过作垂足为,根据AF是角平分线可得,FG垂直平分BC可得,从而可得,再由,可得,从而可得,即可得.【详解】(1)证明:设,平分,,,,,,,又,∴,即平分.(2)解:连接,过作垂足为,由(1)可知平分,又∵,,垂直平分于点,在与中,,,∴,与中,,,∴,即,,.【点睛】本题考查了全等三角形综合,涉及了三角形角平分线性质、线段垂直平分线性质,(1)解答的关键是沟通三角形外角和内角的关系;(2)关键是作辅助线构造全等三角形转化线段和差关系.20、(1)65°(2)证明见解析【分析】(1)由题意可得∠EAD=∠BAC=25°,再根据∠AED=90°,利用直角三角形两锐角互余即可求得答案;(2)由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,DE=DC,根据线段垂直平分线的判定定理即可得证.【详解】(1)∵AD平分∠BAC,∠BAC=50°,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠ADE=90°-∠EAD=90°-25°=65°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又AD平分∠BAC,∴∠DAE=∠DAC,又∵AD=AD,∴△AED≌△ACD,∴AE=AC,DE=DC∴点A在线段CE的垂直平分线上,点D在线段CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.【点睛】本题考查了直角三角形两锐角互余、三角形全等的判定与性质、线段垂直平分线的判定等,熟练掌握相关的性质定理与判定定理是解题的关键.21、(1)15天;(2)甲工程队做了5天,乙工程队做了20天【分析】(1)设规定时间是x天,那么甲单独完成的时间就是x天,乙单独完成的时间为2x,根据题意可列出方程;(2)设甲工程队做了m天,乙工程队做了n天,则可列出方程组得解.【详解】解:(1)设规定时间是x天,根据题意得,,解得x=15,经检验:x=15是原方程的解.答:我市要求完成这项工程规定的时间是15天;(2)由(1)知,由甲工程队单独做需15天,乙工程队单独做需30天,由题意得,.解得.答:该工程甲工程队做了5天,乙工程队做了20天【点睛】本题主要考查了分式方程的应用及二元一次方程组的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤.22、(1)第一组,第二组;(2).【分析】(1)设第一组的速度为,则第二组的速度为,根据两个小组同时开始攀登,第二组比第一组早,列方程求解.(2)设第一组的速度为,则第二组的速度为,根据两个小组去攀登另一座高的山,第二组比第一组晚出发,结果两组同时到达顶峰,列方程求解.【详解】解:(1)设第一组的速度为,则第二组的速度为,由题意得,,解得:,经检验:是原分式方程的解,且符合题意,则.答:第一组的攀登速度,第二组的攀登速度;(2)设第一组的平均速度为,则第二组的平均速度为,由题意得,,解得:,经检验:是原分式方程的解,且符合题意,则,答:第二组的平均攀登速度比第一组快.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论