版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.32.比较2,,的大小,正确的是()A. B.C. D.3.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE=S矩形ABCDA.1个 B.2个 C.3个 D.4个4.下列坐标点在第四象限的是()A. B. C. D.5.如图,点在线段上,,增加下列一个条件,仍不能判定的是()A. B. C. D.6.化简的结果是A.+1 B. C. D.7.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3 C.4.5 D.58.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,则AB的长是()A.4 B.6 C.8 D.109.一个多边形的各个内角都等于120°,则它的边数为()A.3 B.6 C.7 D.810.已知,且,则代数式的值等于()A. B. C. D.二、填空题(每小题3分,共24分)11.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.12.有一个数值转换器,原理如图:当输入x为81时,输出的y的值是_____.13.如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM的周长的最小值为_____.14.若已知,,则__________.15.已知方程2x2n﹣1﹣3y3m﹣n+1=0是二元一次方程,则m=_____,n=_____.16.已知中,,,长为奇数,那么三角形的周长是__________.17.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段18.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=15,BD:CD=3:2,则点D到AB的距离是________.三、解答题(共66分)19.(10分)解下列分式方程.(1)(2)20.(6分)求使关于的方程的根都是整数的实数的值.21.(6分)(1)计算(2)运用乘法公式计算(3)因式分解:(4)因式分解:22.(8分)在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.23.(8分)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D,(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.24.(8分)分解因式:.25.(10分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?26.(10分)如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
参考答案一、选择题(每小题3分,共30分)1、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.2、C【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∵26=64,,,而49<64<125∴∴故选C.【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.3、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出(1)正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出(2)正确,(3)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【详解】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(1)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(2)正确;∵OG=a,BC=a,∴OG≠BC,故(3)错误;∵S△AOE=a•a=a2,SABCD=3a•a=3a2,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(2)(4),共3个.故选:C.【点睛】本题考查矩形的性质,直角三角形斜边上的中线等于斜边的一半,等边三角形的判定,含30°角的直角三角形.熟练掌握相关定理,并能通过定理推出线段之间的数量关系是解决此题的关键.4、D【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【详解】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得在第四象限内的是(1,-2),
故选:D.【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.5、B【分析】由CF=EB可求得EF=DC,结合∠A=∠D,根据全等三角形的判定方法,逐项判断即可.【详解】∵CF=EB,∴CF+FB=FB+EB,即EF=BC,且∠A=∠D,∴当时,可得∠DFE=∠C,满足AAS,可证明全等;当时,满足ASS,不能证明全等;当时,满足AAS,可证明全等;当时,可得,满足AAS,可证明全等.故选B.【点睛】此题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS,SAS,ASA,AAS和HL.6、D【解析】试题分析:.故选D.7、A【分析】先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【详解】解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.【点睛】本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8、C【解析】试题解析:∵∠ACB=90°,∠A=30°,∴∠B=60°,又CD是高,∴∠BCD=30°,∴BC=2BD=4cm,∵∠A=30°,∴AB=2BC=8cm,故选C.9、B【解析】试题解析:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=10°,∴边数n=310°÷10°=1.故选B.考点:多边形内角与外角.10、C【分析】先将因式分解,再将与代入计算即可.【详解】解:,故答案为:C.【点睛】本题考查了代数式求值问题,涉及了利用平方差公式进行因式分解,解题的关键是熟记平方差公式.二、填空题(每小题3分,共24分)11、十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.12、【分析】将x的值代入数值转化器计算即可得到结果.【详解】将x=81代入得:=9,将x=9代入得:=3,再将x=3代入得则输出y的值为.13、1.【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×6×AD=18,解得AD=6,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=6+×6=6+3=1.故答案为:1.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质,轴对称-最短路线问题.能根据轴对称的性质得出AM=MC,并由此得出MC+DM=MA+DM≥AD是解决此题的关键.14、1【分析】利用平方差公式,代入x+y=5即可算出.【详解】解:由=5把x+y=5代入得x-y=1故本题答案为1.【点睛】本题考查了平方差公式的运用,熟练掌握相关知识点事解决本题的关键.15、1【分析】含有两个未知数,并且所含未知数的项的次数是都是1的方程是二元一次方程,根据定义解答即可.【详解】由题意得:2n-1=1,3m-n+1=1,解得n=1,,故答案为:,1.【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.16、18或20【分析】根据三角形三边关系定理得到第三边的范围,再根据BC为奇数和取值范围确定三角形的周长即可.【详解】解:根据三角形的三边关系可得:8-3<BC<8+3,即:5<BC<11,∵BC为奇数,∴BC的长为7或9,∴三角形的周长为18或20.故答案为:18或20.【点睛】本题主要考查三角形的三边关系,关键是掌握三角形三边关系定理即三角形任意两边之和大于第三边;三角形的任意两边之差小于第三边.17、13.【解析】∵CD沿CB平移7cm至EF∴EF//CD,CF=7∴BF=BC-CF=5,EF=CD=4,∠EFB=∠C∵AB=AC,∴∠B=∠C∴EB=EF=4∴C考点:平移的性质;等腰三角形的性质.18、6【分析】过点D作DE⊥AB于E,根据比例求出CD,再根据角平分线上的点到角的两边的距离相等可得DE=CD.【详解】过点D作DE⊥AB于E,∵BC=15,BD:CD=3:2,∴∵,AD平分∠BAC,∴DE=CD=6.故答案为6.【点睛】考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)根据解分式方程的一般步骤解分式方程即可;【详解】解:(1)化为整式方程为:移项、合并同类项,得解得:经检验:是原方程的解.(2)化为整式方程为:移项、合并同类项,得解得:经检验:是原方程的解.【点睛】此题考查的是解分式方程,掌握解分式方程的一般步骤是解决此题的关键,需要注意的是解分式方程要验根.20、或或【分析】分两种情况讨论,当方程为一元一次方程时,即时,当方程为一元二次方程时,即时,利用一元二次方程的根与系数的关系构建正整数方程组,求解两根之和与两根之积,再建立分式方程,解方程并检验,结合根的判别式可得答案.【详解】解:当,方程变为:,解得方程有整数根为当,方程为一元二次方程,设两个整数根为,则有为整数,或或或即:或或,解得:或经检验:是的根,是的根,又当或时,都有>,当为、、时方程都是整数根.【点睛】本题考查的是一元二次方程的整数根问题,考查根的判别式,根与系数的关系,方程组的正整数解,掌握以上知识是解题的关键.21、(1)9(2)(3)(4)【分析】(1)根据完全平方公式即可进行求解;(2)根据乘方公式即可求解;(3)先提取a,再根据完全平方公式进行因式分解;(4)先分组进行分解,再进行因式分解.【详解】(1)==9(2)===(3)==(4)===【点睛】此题主要考查整式的运算及因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22、(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)2【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,4);(2)作ON'⊥AB于N',作MN⊥OB于N,此时OM+MN的值最小,由等边三角形的性质和勾股定理求出ON=2即可.【详解】解:(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,4);综上所述,若△ABD是等腰三角形,点C的坐标为(0,﹣4)或(0,4);(2)解:作ON'⊥AB于N',作MN⊥OB于N,如图2所示:∵△OAB是等边三角形,ON'⊥AB,FB是OA边上的中线,∴AN'=AB=2,BF⊥OA,BF平分∠ABO,∵ON'⊥AB,MN⊥OB,∴MN=MN',∴N'和N关于BF对称,此时OM+MN的值最小,∴OM+MN=OM+MN'=ON,∵ON===2,∴OM+MN=2;即OM+NM的最小值为2.【点睛】本题是三角形综合题目,考查了等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的性质以及最小值问题;本题综合性强,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.23、(1)证明见解析;(2)AB=1.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【详解】解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程项目承揽建设股权合作协议(居间协议)
- 工程图纸基础(名词、符号、代号大全)
- 2.1.2大气运动(热力环流)课件高中地理鲁教版(2019)必修一
- 13书面表达分类精练-2022-2023学年八年级英语下学期期末复习培优拔高(牛津译林版)(原卷版)
- 2024年黄冈客车上岗证模拟考试
- 2024年唐山客运从业资格证考试模拟考试
- 2024年标准版续租租房合同范本
- 2024年郑州客运从业资格证模拟考试题库下载
- 2024年南充客运资格证考试内客
- 2024年民间融资居间合同样本
- 附表 电力服务(涉电维护、检测等)收费项目及标准
- 《矿山机械设备》复习题
- 焊接工艺设计方案
- 中国古代楼阁PPT课件
- 二手车旧机动车评估图文实例及交易注意事项珍贵教材PPT课件
- 公司“师带徒”实施方案
- 管02酸洗、钝化记录
- 《内科护理学》病例分析(完整版)
- 低压有源滤波柜订货技术文件
- 全国中学生物理竞赛纯电阻电路的简化和等效变换
- 5GQoS管理机制介绍
评论
0/150
提交评论